Theory of Computation

Finite Automata

- Deterministic Finite Automata

■ Languages decided by a DFA - Regular Languages

- Closure Properties of regular languages

■ Non-Deterministic Finite Automata, DFA= NFA
■ Regular Expression: Computation as Description

- DFA=NFA=RegExp, Generalized NFA

■ Non-Regular Languages, The Pumping Lemma

- Minimizing DFA

Imdad ULLAH Khan

Language of DFA

DFA: Formal Definition

A DFA M is a 5 -tuple $\quad M=\left(Q, \Sigma, q_{0}, \delta, F\right)$

- Q: A finite set of states

■ Σ : Alphabet
\triangleright A finite set of characters

- $q_{0} \in Q \quad$ Start or initial state

■ $\delta: Q \times \Sigma \mapsto Q \quad$ Transition function
■ $F \subseteq Q \quad$ Set of accept/final states
M accepts $w=w_{1}, w_{2}, \ldots, w_{n} \in \Sigma^{n}$
if there is a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ such that
$r_{0}=q_{0}, \quad \delta\left(r_{i}, w_{i+1}\right)=r_{i+1}, \quad r_{n} \in F$

Decision Problem = Language Recognition Problem

There is a one-to-one correspondence between decision problem and language recognition problem

Every language L over Σ uniquely corresponds to a decision problem $f: \Sigma^{*} \mapsto\{$ Yes, No $\}$

$$
L=\{w: f(w)=\mathbf{Y e s}\}
$$

A decision problem is the task of recognizing whether a given string (instance) is in a language

Language Decided by DFA

Let M be a DFA over Σ

$$
L(M)=\left\{w \in \Sigma^{*}: M \text { accepts } w\right\}
$$

$L(M)$ is the language decided (or accepted/recognized/computed) by M

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ ends with a 1$\}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ ends the substring 00$\}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ contains an even number of 1 's $\}$

Give a formal proof by induction (on the length of strings)

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ has even length $\}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{b, c, a a, a b\}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{a, b\}^{*}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ contains the substring 001$\}$

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ ends with a 0$\} \cup\{\epsilon\}$
ϵ is the unique string of length 0 , the empty string

Language Decided by DFA

What language is decided by the following DFA (in the obvious Σ)?

$L(M)=\{w: w$ does not contain $a a$ or $b b\}$
q_{3} serves as a trap state

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{1} \subseteq\{0,1\}^{*}=\{w: w \text { begins with a } 1\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{2} \subseteq\{0,1\}^{*}=\{w:|w| \text { is divisible by } 4\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language
$L_{3} \subseteq\{a, b\}^{*}=\{w: w$ starts and ends with the same character $\}$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{1} \subseteq\{a, b\}^{*}=\{a a b, a b a\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
\overline{L_{1}} \subseteq\{a, b\}^{*}=\overline{\{a a b, a b a\}}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{4} \subseteq\{0,1\}^{*}=\{w: w \text { has length at least } 3\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{6} \subseteq\{0,1\}^{*}=\{w: w \text { has length divisible } 2 \text { OR } 3\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{6} \subseteq\{0,1\}^{*}=\{w: w \text { has length divisible } 2 \text { AND } 3\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{6} \subseteq\{0,1\}^{*}=\emptyset
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{6}=\{0,1\}^{*}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following language

$$
L_{6} \subseteq\{0,1\}^{*}=\{\epsilon\}=\{w: w \text { is the empty string }\}
$$

DFA for Languages

Design a DFA (with as few states as you can) for the following languages

■ $L_{5} \subseteq\{0,1\}^{*}=\{w: w$ has length divisible 3$\}$

- $L_{7} \subseteq\{0,1\}^{*}=\{w: w$ has length divisible 2 AND 3$\}$

■ $L_{10} \subseteq\{0,1\}^{*}=\{\epsilon, 001,001001,001001001, \ldots$,
■ $L_{11} \subseteq\{0,1\}^{*}=\{w: w$ contains the substring 101$\}$

