
Theory of Computation

Finite Automata

Deterministic Finite Automata

Languages decided by a DFA – Regular Languages

Closure Properties of regular languages

Non-Deterministic Finite Automata, DFA= NFA

Regular Expression: Computation as Description

DFA=NFA=RegExp, Generalized NFA

Non-Regular Languages, The Pumping Lemma

Minimizing DFA

Imdad ullah Khan

Imdad ullah Khan (LUMS) Finite Automata 1 / 14



Deterministic Finite Automata

Imdad ullah Khan (LUMS) Finite Automata 2 / 14



Models of Computation: Finite Automata

Automata are distinguished by type/amount of working memory

A Deterministic Finite Automata has constant working memory

O(1)

Working Memory

Program Memory

Finite Automaton

CPU
Output
Memory

n bits

Memory
Input

Automaton

Imdad ullah Khan (LUMS) Finite Automata 3 / 14



Anatomy of DFA

A Deterministic Finite
Automata has constant
working memory

O(1)

Working Memory

Program Memory

Finite Automaton

CPU
Output
Memory

n bits

Memory
Input

Automaton

A deterministic finite automaton or a finite
state machine is a little creature

it has tiny eyes – sees one symbol

changes its state of mind according to
the symbol it sees

only remember its current state of mind

Imdad ullah Khan (LUMS) Finite Automata 4 / 14



Anatomy of DFA

A DFA over alphabet Σ is depicted as a directed graph with self-loops

▷ called state diagram of the DFA

q0

q1

q2

q3

1
1

0

1
0

1

initial state

transition for every state and symbol in Σ

states

states accepting states

0
0

Imdad ullah Khan (LUMS) Finite Automata 5 / 14



Anatomy of DFA

A DFA over alphabet Σ is depicted as a directed graph with self-loops

▷ called state diagram of the DFA

q0

q1

q2

q3

1
1

0

1
0

1

initial state

transition for every state and symbol in Σ

states

states accepting states

0
0

Imdad ullah Khan (LUMS) Finite Automata 6 / 14



Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.

q0

q1

q2

q3

1
1

0

1
0

1

initial state

transition for every state and symbol in Σ

states

states accepting states

0
0

Imdad ullah Khan (LUMS) Finite Automata 7 / 14



Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.

0
0q0

q1

q2

q3

1 1

0

1
0

1

q0

q1

q2

q3

1 1

0

1
0

1

0
0q0

q1

q2

q3

1 1

0

1
0

1

0
0q0

q1

q2

q3

1 1

0

1
0

1

0
0

1 0 −1 1 0 −1 1 0 −1 1 0 −1

This DFA accepts the input string 101

Imdad ullah Khan (LUMS) Finite Automata 8 / 14



Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.

0
0q0

q1

q2

q3

1 1

0

1
0

1

q0

q1

q2

q3

1 1

0

1
0

1

0
0q0

q1

q2

q3

1 1

0

1
0

1

0
0q0

q1

q2

q3

1 1

0

1
0

1

0
0

1 1 −0 1 1 −0 1 1 −01 1 −0

This DFA rejects the input string 110

Imdad ullah Khan (LUMS) Finite Automata 9 / 14



Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.

q0

q1

q2

q3

1 1

0

1
0

1

0
0q0

q1

q2

q3

1 1

0

1
0

1

0
0

0
0q0

q1

q2

q3

1 1

0

1
0

1

1 1 −01 0 −1

Which strings are accepted by this DFA?

Imdad ullah Khan (LUMS) Finite Automata 10 / 14



DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

M accepts w = w1,w2, . . . ,wn ∈ Σn

if there is a sequence of states r0, r1, . . . , rn such that

r0 = q0, δ(ri ,wi+1) = ri+1, rn ∈ F

Imdad ullah Khan (LUMS) Finite Automata 11 / 14



DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

q0 q1 q2

1

0

0

1

1
0

Q = {q0, q1, q2}
Σ = {0, 1}
Initial State: q0

δ(q0, 0) = q1, δ(q0, 1) = q0

δ(q1, 0) = q2, δ(q1, 1) = q0

δ(q2, 0) = q2, δ(q2, 1) = q0

F = {q2}
Imdad ullah Khan (LUMS) Finite Automata 12 / 14



DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

Transition function δ can be depicted in a transition table (lookup table)

q0 q1 q2

1

0

0

1

1
0

0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

Imdad ullah Khan (LUMS) Finite Automata 13 / 14



DFA as Programming Code

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

Algorithm DFA as Programming Code
state← q0
i ← 0
while input[i ] ̸= eof do
state← δ(state, input[i ])
i ← i + 1

if state ∈ F then
return Accept

else
return Reject

Imdad ullah Khan (LUMS) Finite Automata 14 / 14


