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Deterministic Finite Automata
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Models of Computation: Finite Automata

Automata are distinguished by type/amount of working memory

A Deterministic Finite Automata has constant working memory
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Anatomy of DFA

A Deterministic Finite
Automata has constant
working memory
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A deterministic finite automaton or a finite
state machine is a little creature

it has tiny eyes – sees one symbol

changes its state of mind according to
the symbol it sees

only remember its current state of mind
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Anatomy of DFA

A DFA over alphabet Σ is depicted as a directed graph with self-loops

▷ called state diagram of the DFA
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Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.
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Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.
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This DFA accepts the input string 101
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Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.
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This DFA rejects the input string 110
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Simulation of DFA

DFA begins in the (unique) initial state and read the input left-to-right
one character at a time

It transition to the next state according to transition rules (labeled edges)

The automaton accepts the input string if the last state is an accepting
state (double-circled). Else, it rejects the input string.
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Which strings are accepted by this DFA?
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DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

M accepts w = w1,w2, . . . ,wn ∈ Σn

if there is a sequence of states r0, r1, . . . , rn such that

r0 = q0, δ(ri ,wi+1) = ri+1, rn ∈ F
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DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

q0 q1 q2
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Q = {q0, q1, q2}
Σ = {0, 1}
Initial State: q0

δ(q0, 0) = q1, δ(q0, 1) = q0

δ(q1, 0) = q2, δ(q1, 1) = q0

δ(q2, 0) = q2, δ(q2, 1) = q0

F = {q2}
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DFA: Formal Definition

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

Transition function δ can be depicted in a transition table (lookup table)
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DFA as Programming Code

A DFA M is a 5-tuple M = (Q,Σ, q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

q0 ∈ Q Start or initial state

δ : Q × Σ 7→ Q Transition function

F ⊆ Q Set of accept/final states

Algorithm DFA as Programming Code
state← q0
i ← 0
while input[i ] ̸= eof do
state← δ(state, input[i ])
i ← i + 1

if state ∈ F then
return Accept

else
return Reject
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