Algorithms Review

Algorithmic Thinking and Terminology

- Problem Formulation
- Algorithm Design Strategy: Implementing the Definition
- Algorithms Runtime Analysis

■ Basic Numbers and Vectors Arithmetic

Imdad ullah Khan

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False
if $A \bmod 2=0$ then return true

Pseudocode

- A plain English description of "steps" of algorithm

■ Use structural conventions like C/Java

- Focus on solution rather than technicalities of programming language

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False
if $A \bmod 2=0$ then return true

Issues:

- The above algorithm only works if A is given in an int
- What if A doesn't fit an int and A 's digits are given in an array?
- What if A is given in binary/unary/...?
\triangleright These issues are in addition to usual checks of valid input

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If 'digits' of A digits are given in an array
if $A[0] \bmod 2=0$ then return true

Questions computer scientists would (must) ask?

What is the problem?

■ What is input/output?, what is the " format"?
■ What are the "boundary cases", "easy cases", "bruteforce solution"?
■ What are the available "tools"?

Do not jump to solution, spend time on problem formulation
Formulating the problem with precise definitions often yield a solution
\triangleright e.g. both the above algorithms just use definitions of even numbers
This is implementing the definition algorithm design paradigm
\triangleright The bruteforce solution
What is the dumbest/obvious/laziest way to solve the problem? What is the easiest cases? what are the hardest cases? where is the hardness?

Questions computer scientists would (must) ask?

Input: An integer A
Output: True if A is even, else False

If digits of A are given in an array

$$
A=\begin{array}{|l|l|l|l|l|l|l|}
6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 4 & 6 & 9 & 2 & 7 & 5 & 8 \\
\hline
\end{array}
$$

What if mod is not available?
\triangleright What are the tools available?
if $A[0]=0$ then return true
else if $A[0]=2$ then return true
else
return false

Questions computer scientists would (must) ask?

Is the algorithm "correct"?

■ Does it do what it is "supposed" to do? \triangleright requirement specification
■ Does it always "produce" the "correct output"?
■ Does it work for all "legal inputs"?

An extremely important step! Without a convincing argument for correction, we cannot call it an algorithm or solution
\triangleright Relies heavily on the problem formulation

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False
if $A \bmod 2=0$ then return true
if $A[0] \bmod 2=0$ then
return true
> if $A[0]=0$ then return true else if $A[0]=2$ then return true
> else
> return false

Correctness of these 3 algorithms follows from definition of even/odd and/or mod, depending on how we formulate the problem

Questions computer scientists would (must) ask?

How much "resources" does the algorithm consume?

Analysis of Algorithms: the theoretical study of performance and resource utilization of algorithms

How to measure the "goodness" of an algorithms?

- Time consumption
- Space and memory consumption

■ Bandwidth consumption or number of messages passed
■ Energy consumption
■

How to measure runtime?

Clock-time of algorithm execution is not a suitable measure
■ Depends on machine/hardware, operating systems, other concurrent programs, implementation language and style etc.

■ We want platform and implementation language independent
Number of operations is the right framework

- Measure runtime in terms of number of elementary operations
- Assuming each elementary operation takes fixed computation time
- Important to decide which operations are counted as elementary
if $A \bmod 2=0$ then \quad Number of operations: $1 \bmod$ and 1 comparison return true

Runtime as a function of input size

We want a consistent mechanism to measure efficiency that is platform and implementation language independent

Number of elementary operations depends on the actual input
Measure runtime by number of operations as a function of size of input
\triangleright Has predictive value with respect to increasing input sizes
Size of input: usually number of bits needed to encode the input instance, can be length of an array, number of nodes in a graph etc.

Issue: For inputs of fixed size (n) there could be different runtimes depending on different instances

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False
If digits of A are given in an array

$A=$	6	5	4	3	2	1	0
4	6	9	2	7	5	8	

If mod is not available
Just check if $A[0] \in\{0,2,4,6,8\}$
if $A[0]=0$ then return true
else if $A[0]=2$ then return true
else return false

What is the number of comparisons when $A[0]=0$ and when $A[0]=8$?

Best/Worst/Average Case

Issue: For inputs of fixed size (n) there could be different runtimes depending on different instances

Let $T(I)$ be the time, algorithm takes on instance I

$$
\text { Best case runtime: } \quad t_{\text {best }}(n)=\operatorname{MIN}_{t:|l|=n}\{T(I)\}
$$

Worst case runtime:

$$
t_{\text {worst }}(n)=\operatorname{MAX}_{I:|I|=n}\{T(I)\}
$$

Average case runtime:

$$
\operatorname{tav}(n)=\operatorname{AVERAGE}_{l:|| |=n}\{T(I)\}
$$

In general, we consider the worst case runtime

Adding two n digits integers

Input: Two n digits numbers A and B
Output: $A+B$

For "small" A and B

1: $C \leftarrow A+B$

- The algorithm is correct by definition of + operator
- Runtime is one integer addition
- Can't really do better than that ...

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: $A+B$ ($n+1$-digit array)

$A=$6 5 4 3 2 1 0 4 6 9 2 7 5 8 6 5 4 3 2 1 0 5 5 4 3 2 1 0

	1	1	1		
4	6	9	2	7	5

1: $c \leftarrow 0$
2: for $i=0$ to $n-1$ do
3: $\quad S[i] \leftarrow(A[i]+B[i]+c) \bmod 10$
4: $\quad c \leftarrow(A[i]+B[i]+c) / 10$
5: $S[n] \leftarrow c$

- Correct?

■ Runtime?

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays) Output: $A+B$ ($n+1$-digit array)

1: $c \leftarrow 0$
2: for $i=0$ to $n-1$ do
3: $\quad S[i] \leftarrow(A[i]+B[i]+c) \bmod 10$
4: $\quad c \leftarrow(A[i]+B[i]+c) / 10$
5: $S[n] \leftarrow c$

1 time
$\} n$ times

1 time
$6 n$ single digit arithmetic operations

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: $A \times B(2 n+1$-digit array $)$

$$
\begin{aligned}
& \text { 1: for } i=1 \text { to } n \text { do } \\
& \text { 2: } \quad c \leftarrow 0 \\
& \text { 3: } \quad \text { for } j=1 \text { to } n \text { do } \\
& \text { 4: } \quad Z[i][j+i-1] \leftarrow(A[j] * B[i]+c) \bmod 10 \\
& \text { 5: } \quad c \leftarrow(A[j] * B[i]+c) / 10 \\
& \text { 6: } \quad Z[i][i+n] \leftarrow c \\
& \text { carry } \leftarrow 0 \\
& \text { 8: for } i=1 \text { to } 2 n \text { do } \\
& \text { 9: } \quad \text { sum } \leftarrow \text { carry } \\
& \text { 10: } \quad \text { for } j=1 \text { to } n \text { do } \\
& \text { 11: } \quad \text { sum } \leftarrow \text { sum }+Z[j][i] \\
& \text { 12: } \quad C[i] \leftarrow \text { sum } \bmod 10 \\
& \text { 13: } \text { carry } \leftarrow \text { sum } / 10 \\
& \text { 14: } C[2 n+1] \leftarrow \text { carry }
\end{aligned}
$$

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: (integer) $C=A \times B$
Reformulate and apply distributive and associative laws
$\left(A[0] * 10^{0}+A[1] * 10^{1}+A[2] * 10^{2}+\ldots\right) \times\left(B[0] * 10^{0}+B[1] * 10^{1}+B[2] * 10^{2}+\ldots\right)$

1: $C \leftarrow 0$
2: for $i=1$ to n do
3: \quad for $j=1$ to n do

		\times	7 6	5 3	8 2
		-	-	-	-
	-	-	-	-	
	-	-	-		
		9	0	5	

Ops: n^{2} single digit multiplications + shifting (multiplying by 10^{\times})

Exponentiation

Input: Two integers, a and $n \geq 0$
Output: a^{n}

Problem Formulation

$$
a^{n}=\underbrace{a \times a \times \ldots \times a}_{n \text { times }}
$$

■ Correct by definition

- Takes n multiplications
\triangleright integer multiplications
- Initializing x to a, saves one multiplication
\triangleright Careful! what if $n=0$
Can we do better?

Exponentiation

Input: Two integers, a and $n \geq 0$ Output: a^{n}

Problem Formulation

$$
a^{n}= \begin{cases}a * a^{n-1} & \text { if } n>1 \\ a & \text { if } n=1 \\ 1 & \text { if } n=0\end{cases}
$$

function REC-EXP (a, n)
if $n=0$ then return 1
else if $n=1$ then return a else
return $a * \operatorname{REC}-\operatorname{EXP}(a, n-1)$

- Correct by the above definition
- Number of operations?
\triangleright Number of recursive calls \times Number of operations per call

Exponentiation

Input: Two integers, a and $n \geq 0$ Output: a^{n}

Problem Formulation

$$
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n>1 \text { even } \\ a \cdot a^{n-1 / 2} \cdot a^{n-1 / 2} & \text { if } n \text { is odd } \\ 1 & \text { if } n=0\end{cases}
$$

function REP-SQ-EXP (a, n)
if $n=0$ then return 1
else if $n>0$ AND n is even then
$z \leftarrow \operatorname{REP}-\operatorname{SQ}-\operatorname{EXP}(a, n / 2)$
return $z * z$
else
■ Correctness
■ Number of calls?

- operations per call?
$z \leftarrow \operatorname{REP}-\operatorname{SQ}-\operatorname{EXP}(a, n-1 / 2)$
return $a * z * z$
Give a non-recursive implementation of repeated squaring based exponentiation. You can also use the binary expansion of n

Dot Product of two vectors

Input: Two n-dimensional vectors as arrays A and B
Output: $A \cdot B:=\langle A, B\rangle:=A[1] B[1]+\ldots+A[n] B[n]:=\sum_{i=1}^{n} A[i] B[i]$

$$
\begin{array}{cc}
\text { A } & \text { B } \\
{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\sum_{i=1}^{n} a_{i} b_{i}} & \begin{array}{c}
s \leftarrow 0 \\
\text { for } i=i \text { to } n \text { do } \\
s \leftarrow s+A[i] * B[i] \\
\text { return } s
\end{array}
\end{array}
$$

- Correctness follows from definition
- Runtime is n multiplications and $n-1$ additions
\triangleright integer/real additions and multiplications
■ At least n "operations" are required for reading the input

\triangleright Lower Bound

Matrix-Vector Multiplication

Input: Matrix A and vector b Output: $c=A * b$
■ Condition: num columns of $A=$ num rows of b

$$
A_{m \times n} \times b_{n \times 1}=c_{m \times 1}
$$

Matrix-Vector Multiplication

Input: Matrix A and vector b Output: $c=A * b$
function MAT-VECTPROD (A, b)
$c[][] \leftarrow \operatorname{zeros}(m \times 1)$
for $i=1$ to m do

$$
c[i] \leftarrow \operatorname{DOT}-\operatorname{PrOD}(A[i][:], b)
$$

return c

- Correct by definition

■ Runtime is m dot-products of n-dim vectors

- Total runtime $m \times n$ real multiplications and additions

Matrix-Matrix Multiplication

Input: Matrices A and B Output: $C=A * B$
■ Condition: num columns of $A=$ num rows of B

$$
A_{m \times n} \times B_{n \times k}=C_{m \times k}
$$

Matrix-Matrix Multiplication

Input: Matrices A and B Output: $C=A * B$

- Condition: num columns of $A=$ num rows of B

$$
A_{m \times n} \times B_{n \times k}=C_{m \times k}
$$

function MAT-MATPROD (A, B)
$C[][] \leftarrow \operatorname{ZEROS}(m \times k)$
for $j=1$ to k do
$C[:][j] \leftarrow$ Mat-VECTProd $(A, B[:][j])$
return C

■ k Matrix-Vector products of $m \times n$ and $n \times 1$
■ Total $k \times m \times n$ real multiplications and additions

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: $C=A * B$

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: $C=A * B$

- Condition: num columns of $A=$ num rows of B

$$
A_{m \times n} \times B_{n \times k}=C_{m \times k}
$$

function MAT-MATPROD (A, B)

$$
\begin{aligned}
& C[][] \leftarrow \operatorname{ZEROS}(m \times k) \\
& \text { for } i=1 \text { to } m \text { do } \\
& \quad \text { for } j=1 \text { to } k \text { do } \\
& \quad C[i][j] \leftarrow \operatorname{DOT}-\operatorname{PROD}(A[i][:], B[:][j])
\end{aligned}
$$

return C

- Performs $m \times k$ dot-products of n-dim vectors

■ Total $m \times k \times n$ real multiplications and additions

- Problem formulation with precise definitions/notation is important
- Definition-based (and other strategies) critically depend on it
- Pseudocode is a good human-readable way to describe solution

■ Correctness of an algorithm is argued in view of problem statement

- Runtime of an algorithm is the most basic measure of its goodness
- Runtime is measured by number of well-chosen elementary operations as a function of size of input
- We usually consider the worst case runtime for a fixed input size
- An algorithm can be used as a subroutine in another

■ Studied algorithms (for exponentiation) with different runtime

- Always ask if a solution can be improved (usually in terms of runtime)

■ Lower bound means no algorithm has runtime lower than the bound

