Theory of Computation

Prerequisite and Review

Imdad ullah Khan

Prerequisites

You must have "passed" Discrete Mathematics and Algorithms
The course is fast-paced and assume experience with mathematical reasoning and algorithmic thinking

You should be comfortable with

- Propositional Logic
- Predicates and Quantifiers
- Set Theory and Countability
- Functions and Cross Product
- Relations, Equivalence and Partial Order
- Proofs
- Induction
- Algorithm Analysis
- Asymptotic Notation

■ Graph Algorithms
■ Divide and Conquer Algorithm

- Recursion and Recurrences
- Dynamic Programming
- Complexity and NP-Completeness

Proposition

A statement is a description of something

A proposition is a statement that is either true or false and not both and not neither

- We can make (compound) propositions from others
- Negation a proposition

■ Proposition made by combining two propositions with AND, OR, XOR, IF-THEN, IFF
■ $P \rightarrow Q$ is false when P is true and Q is false
■ The converse of $P \rightarrow Q$ is $Q \rightarrow P$
■ The contrapositive of $P \rightarrow Q$ is $\neg Q \rightarrow \neg P$

- The inverse of $P \rightarrow Q$ is $\neg P \rightarrow \neg Q$

Quantified Expression: Summary

- A predicate is a property that is true or false about the subject(s)
- $P(x)$ is the value of propositional function P at x
- $P(x)$ becomes proposition when specific value are assigned to x

■ Quantifiers make it proposition for a range of values
■ Universal Quantifier: \forall

- $\forall x P(x):=P(x)$ (is true) for all values of x in the UoD

Proposition $\forall x P(x)$ is True iff for every x in UoD, $P(x)$ is True

■ Existential Quantifier: \exists

- $\exists x P(x):=P(x)$ (is true) for some value(s) of x in the UoD

Proposition $\exists x P(x)$ is True iff for at least one x in UoD, $P(x)$ is True

Truth Values of Nested Quantified Expressions

Statement	When True?	When False?
$\forall x \forall y P(x, y)$	$P(x, y)$ is true for every pair x, y	There is a pair x, y for which $P(x, y)$ is false
$\forall y \forall x P(x, y)$	There is an x such that $\forall x \exists y P(x, y)$	For every x, there is a y for which $P(x, y)$ is true
$\exists x \forall y P(x, y)$ is false for every y		

Negating Nested Quantified Expressions

Recall

$$
\neg \forall x P(x) \equiv \exists x \neg P(x)
$$

$$
\neg \exists x P(x) \equiv \forall x \neg P(x)
$$

Negate nested quantified statements using iterative applications of negating (singly) quantified statements

$$
\begin{aligned}
& \neg \forall x \exists y P(x, y) \equiv \exists x \neg \exists y P(x, y) \equiv \exists x \forall y \neg P(x, y) \\
& \neg \exists x \forall y P(x, y) \equiv \forall x \neg \forall y P(x, y) \equiv \forall x \exists y \neg P(x, y)
\end{aligned}
$$

$$
\neg \forall x \forall y P(x, y) \equiv \exists x \neg \forall y P(x, y) \equiv \exists x \exists y \neg P(x, y)
$$

$$
\neg \exists x \exists y P(x, y) \equiv \forall x \neg \exists y P(x, y) \equiv \forall x \forall y \neg P(x, y)
$$

Sets Summary

- A set is an ordered collection of objects

■ Order and repetition of objects do not matter

- Sets can be described in various ways

■ Empty set is a well-defined set with zero objects

- Two sets are equal if and only if they have the same elements

■ \bar{A} is the collection of all objects in universal set that are not in A
■ Cardinality of A is the number of distinct elements in A

Subsets: Summary

- A is a subset of B if and only if every element of A is an element of B
- $A \subseteq B, A$ is subset of B, B is superset of A

■ Empty set is a subset of every set

- Every set is a subset of itself
- Power Set of A is the set of all subsets of A
- Cardinality of power set of A with $|A|=n$ is 2^{n}

Set Operations

■ Set Operation (Binary)

- Union
- Intersection
- Difference
- Symmetric Difference
- Generalized Union

■ Generalized Intersection

Set Equality

■ Equality of two sets can be proved using

- Algebraic Rules (Set Identities)
- Set Membership Tables
- Logical Equivalence of membership predicates

■ By proving bidirectional subset relationships

Ordered Tuples and Cartesian Product: Summary

■ Ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of n objects
$\square\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ means $a_{i}=b_{i}$ for $1 \leq i \leq n$

- Ordered 2-tuples $(n=2)$ are called ordered pairs
- Cartesian product of sets A and $B, A \times B$ is the set of all ordered pairs (x, y), where $x \in A$ and $y \in B$
- Cartesian product can be generalized to that of more than 2 sets
- $\left|A_{1} \times A_{2} \times \ldots \times A_{n}\right|=\left|A_{1}\right| \times\left|A_{2}\right| \times \ldots \times\left|A_{n}\right|$

Functions: Summary

■ $f: X \mapsto Y$ maps each element of X to exactly one element of Y
Let $f: X \mapsto Y$ and let $f(x)=y$

- X is the domain of f
- Y is the codomain of f
- y is the image of x
- x is the pre-image of y
- Range of f : set of images of all elements of X
- Functions can be represented by

■ Listing set of all (pre-image, image) ordered pairs

- Bipartite Graph
- Mapping Rule or Algebraic Expression
- Programming Code

Types of functions: Summary

A function $f: X \mapsto Y$ is one-to-one (or injective) iff

$$
\forall x_{1}, x_{2} \in X\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)
$$

A function $f: X \mapsto Y$ is onto (or surjective) iff
for every element $y \in Y$ there is an element $x \in X$ with $f(x)=y$

A function $f: X \mapsto Y$ is one-to-one correspondence (or bijective) iff it is both one-to-one and onto

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

Relations: Summary

- A (binary) relation from X to Y is a subset of $X \times Y$
- A (binary) relation on a set X is a subset of $X \times X$ (relation from X to X)
- An n-ary relation is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$
- A binary relation can be represented by listing the ordered pairs, using a bipartite graph, or with a binary matrix

Properties of Relations: Summary

- A relation R on a set X is reflexive if $(a, a) \in R$ for every element $a \in X$
- A relation R on a set X is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in X$
- A relation R on a set X is antisymmetric if $a=b$ whenever $(a, b) \in R$ and $(b, a) \in R$
\triangleright A relation can be symmetric, antisymmetric, both or none
- A relation R on a set X is transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$

Equivalence Relation

Equivalence Relation

A relation R on a set X is an equivalence relation if it is
(1) reflexive
(2) symmetric, and
(3) transitive

■ Relates "similar" elements
■ Generalize "equality"

Partial Order

Partial Order

A relation R on a set X is a partial order if it is
(1) reflexive,
(2) antisymmetric, and
(3) transitive

Partial orders give an order to sets that may not have a natural one.
For example pre-requisite order to courses
Notation: $a \preccurlyeq b \leftrightarrow(a, b) \in R \quad$ and $\quad a \prec b \leftrightarrow(a, b) \in R, a \neq b$

Pronounced as a preceeds b
Do not confuse \preccurlyeq with $\leq \quad \preccurlyeq$ denotes partial ordering

Proofs

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a proposition assuming the truth of some known axioms

Terminology

■ Axiom: A basic assumption about mathematical structure that is accepted to be true. e.g.

- There is a straight line between any two points
- $2>1$

■ Theorem: Important proposition that has a proof

- Lemma: Proposition that serves as an intermediate step in proof of a theorem
- Corollary: Proposition that follows directly (easily) from a theorem
- Essentially a special case of the general statement of the theorem

■ Rules of Inference: The justification for the steps in the chain of deductions in a proof

■ Fallacy: An incorrect reasoning or deduction

Proving Statements

Pythagoras's Theorem ($\sim 500 \mathrm{BC}$)

$a^{2}+b^{2}=c^{2}$ has solutions where a, b, and c are positive integers

This statement is TRUE,
e.g. $a=3, b=4$, and $c=5$

Proving Statements

Fermat's Last Theorem (1637)

$a^{3}+b^{3}=c^{3}$ has no solution where a, b, c are positive integers

Andrew Wiles (1994) proved this statement to be TRUE

■ Wiles announced "proof" on 23 June 1993

- In September 1993, error was found in the proof
- On 19 September 1994, Wiles corrected the proof
- The corrected proof was published in 1995

Proving Statements

Euler Conjecture (1769)

$a^{4}+b^{4}+c^{4}=d^{4}$ has no solutions where a, b, c, d are positive integers

Noam Elkies (1987) proved this statement FALSE
$a=2682440$,
$b=15365639$,
$c=18796760$,
$d=20615673$,
$3^{3}+4^{3}+5^{3}=6^{3}$
is a solution

Proving Statements

Goldbach Conjecture (1742)

Every even integer >2 is the sum of two primes

Sum of two primes at intersection of two lines. (source: Wikipedia)

■ No one yet knows the truth value of this statement

■ Every even integer ever checked is a sum of two primes
■ Just one counter-example will disprove the claim

■ Homework!

Proving Statements

Conjecture (1852)

Regions of any 2-d map can be colored with 4 colors so that no neighboring regions have the same color

4-Coloring Theorem

- Kempe (1879) announced a proof
- Tait (1880) announced an alternative proof
- Heawood (1890) found a flaw in Kempe's proof
- Petersen (1881) found a flaw in Tait's proof
- Heesch (1969) reduced the statement to checking a large number of cases
- Appel \& Haken (1976) gave a "proof", that involved a computer program to check 1936 cases (1200 hours of computer time)
- Robertson et.al. (1997) gave another simpler "proof" but still involved computer program

FOUR COLORS SUFFICE

UIUC stamp in honor of the 4 -Color theorem

- No human can check all the cases
- What if the program has a bug
- What if the compiler/system hardware has a bug

Direct Proofs

Direct Proof: used to prove statement of the form $P \rightarrow Q$
1 Assume that P is true
2 With a chain of logical deductions conclude that Q is true

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

When P is false, $P \rightarrow Q$ is already true irrespective of value of Q
The only case when $P \rightarrow Q$ is false, is when $P=T$ and $Q=F$
Hence our goal is to rule out that possibility

Proof by Contrapositive

Recall that an implication is equivalent to it's contrapositive

$$
P \rightarrow Q \equiv \neg Q \rightarrow \neg P
$$

Direct Proof to show $P \rightarrow Q$
■ Assume P is true, logically deduce that Q is also true

Proof by Contrapositive to show $P \rightarrow Q$

- apply the direct proof method to it's contrapositive $(\neg Q \rightarrow \neg P)$

Just a restatement of the given statement rather than a proof method

Proof by Contradiction

Suppose we want to prove some statement P to be true In proof by contradiction we argue that
if P is not true, then some contradiction must occur
1 Assume that P is false
2 Show that from this $(\neg P)$ we can logically deduce some contradiction
The contradiction can be to

- the assumption $\neg P$
- implying both P and $\neg P$ are simultaneously true, a contradiction
- or to some known true statement S
- implying S is false, meaning both S and $\neg S$ are simultaneously true

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to exactly one element of Y

Let X be the domain with its elements ordered $x_{1}, x_{2} \ldots$,
$f: X \mapsto Y$ can be represented as a list $\quad f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), \ldots$

■ Images of x_{1}, x_{2}, \ldots listed in the order of X

Properties of functions as lists

Let $f: X \mapsto Y$ be represented as list
$f: X \mapsto Y$ is one-to-one if every $y \in Y$ appears at most once in the list
$f: X \mapsto Y$ is onto if every $y \in Y$ appears at least once in the list
$f: X \mapsto Y$ is bijection if every $y \in Y$ appears exactly once in the list

If $f: X \mapsto Y$ is a bijection and X and Y are finite sets, then $|X|=|Y|$

For finite sets X and $Y,|X|=|Y|$ iff there is a bijection $f: X \mapsto Y$

Cardinality of infinite sets

We showed that
■ |integer powers of 2 and other integers $|=|\mathbb{N}|$

- |powers of all integers $|=|\mathbb{N}|$

■ $|\mathbb{Z}|=|\mathbb{N}|$
"size/2 = size". Surprised!

I see it, but I don't believe it!
George Cantor (in a letter to Dedekind, 1877)

This notion of cardinality enables us to reason about infinity

Countability

A set S is countable if it is either finite or has the same cardinality as \mathbb{N}
S is countable if it can be placed in a one-to-one correspondence with \mathbb{N}
S is countable in the following sense
If we count (write, print, list) one element of S per 'second', then any particular element of S will be counted after a finite time

This means we can list element of S like

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \cdots
$$

Note: We do not say that the whole set will be printed

Countability

A set S is countable if it is either finite or has the same cardinality as \mathbb{N}

The following sets are countable
■ \mathbb{Z}
■ \mathbb{O} and \mathbb{E}, odd and even integers

- Integer powers of 2
- Integer powers of other integers
- Squares, cubes and any power of integers
- \mathbb{Q}^{+}, the set of + ve rational numbers

Countability

Are all infinite sets of the same size (countable)?

No

Cantor invented a very important technique,

DIAGNOLIZATION

to show how to find bigger infinity

The set \mathbb{I} of real numbers between 0 and 1 is not countable

Proof by Induction

A proposition about non-negative integers, $\forall n P(n)$ is a sequence of propositions (dominoes)

$$
P(0), P(1), P(2), \ldots, P(n), P(n+1), \ldots
$$

Establish two facts

- Prove $P(0)$

IIIIIII

the first domino falls

- Prove $\forall k \geq 0, P(k) \rightarrow P(k+1)$
if a domino falls, then the next domino also falls
Conclude that $P(n)$ is true for all n
all dominoes fall

Principle of Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[P(k) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Strong Induction

Principle of Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[P(k) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(n)$
- Inductive Step: Using $P(n)$, prove $P(n+1)$

Principle of Strong Mathematical Induction

$$
[P(0) \wedge \forall k \geq 0[\forall 0 \leq i \leq k P(i) \rightarrow P(k+1)]] \longrightarrow \forall n \geq 0 P(n)
$$

Proof using Strong Induction

- Basis Step: Prove $P(0)$ is true
- IH: Assume $P(k)$ is true for all $1 \leq k \leq n$
- IS: Using $\forall k \leq n P(k)$, prove $P(n+1)$

How to write proofs

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.

Albert Einstein

I don't have any magical ability...I look at the problem, and it looks like one I've already done. When nothing's working out, then I think of a small trick that makes it a little better. I play with the problem, and after a while, I figure out what's going on.

Terry Tao

How to write proofs

Understand the problem

- List what is given to you
- Write down what you need to derive

■ Unpack definitions

How to write proofs

Figure out some meaningful special cases

- $n=1, n=0$,
- empty set

■ Boundary cases, extreme cases, easy case

- Put yourself in the mind of the adversary, worst-case examples/scenarios?

How to write proofs

Simplify the problem

■ Develop good notation, Rephrase the problem
■ Focus on simple version/cases at first
■ Use paper, draw pictures, Draw picture

How to write proofs

Try Different Techniques

■ Direct, Contrapositive, Contradiction, Case Analysis, Induction
■ Focus on simple version/cases at first
■ Use paper, draw pictures, make tables

