
Theory of Computation

Prerequisite and Review

Imdad ullah Khan

Imdad ullah Khan (LUMS) Theory of Computation 1 / 41

Prerequisites

You must have “passed” Discrete Mathematics and Algorithms

The course is fast-paced and assume experience with mathematical
reasoning and algorithmic thinking

You should be comfortable with

Propositional Logic

Predicates and Quantifiers

Set Theory and Countability

Functions and Cross Product

Relations, Equivalence and
Partial Order

Proofs

Induction

Algorithm Analysis

Asymptotic Notation

Graph Algorithms

Divide and Conquer Algorithm

Recursion and Recurrences

Dynamic Programming

Complexity and NP-Completeness

Imdad ullah Khan (LUMS) Theory of Computation 2 / 41

Proposition

A statement is a description of something

A proposition is a statement that is either true or false and not both and
not neither

We can make (compound) propositions from others

Negation a proposition

Proposition made by combining two propositions with and, or, xor,
if-then, iff

P → Q is false when P is true and Q is false

The converse of P → Q is Q → P

The contrapositive of P → Q is ¬Q → ¬P

The inverse of P → Q is ¬P → ¬Q

An implication is equivalent to it’s contrapositiveImdad ullah Khan (LUMS) Theory of Computation 3 / 41

Quantified Expression: Summary

A predicate is a property that is true or false about the subject(s)

P(x) is the value of propositional function P at x

P(x) becomes proposition when specific value are assigned to x

Quantifiers make it proposition for a range of values

Universal Quantifier: ∀
∀x P(x) := P(x) (is true) for all values of x in the UoD

Proposition ∀x P(x) is True iff for every x in UoD, P(x) is True

Existential Quantifier: ∃
∃x P(x) := P(x) (is true) for some value(s) of x in the UoD

Proposition ∃x P(x) is True iff for at least one x in UoD, P(x) is True

Imdad ullah Khan (LUMS) Theory of Computation 4 / 41

Truth Values of Nested Quantified Expressions

Statement When True? When False?

∀x∀y P(x , y)

∀y∀x P(x , y)

P(x , y) is true for
every pair x , y

There is a pair x , y for
which P(x , y) is false

∀x∃y P(x , y)
For every x , there is a y
for which P(x , y) is true

There is an x such that
P(x , y) is false for every y

∃x∀y P(x , y)
There is an x for which
P(x , y) is true for every y

For every x there is a y
for which P(x , y) is false

∃x∃y P(x , y)

∃y∃x P(x , y)

There is a pair x , y for
which P(x , y) is true

P(x , y) is false for
every pair x , y

Imdad ullah Khan (LUMS) Theory of Computation 5 / 41

Negating Nested Quantified Expressions

Recall ¬∀x P(x) ≡ ∃x ¬P(x) ¬∃x P(x) ≡ ∀x ¬P(x)

Negate nested quantified statements using iterative applications of
negating (singly) quantified statements

¬ ∀x ∃y P(x , y) ≡ ∃x ¬ ∃y P(x , y) ≡ ∃x ∀y ¬ P(x , y)

¬ ∃x ∀y P(x , y) ≡ ∀x ¬ ∀y P(x , y) ≡ ∀x ∃y ¬ P(x , y)

¬ ∀x ∀y P(x , y) ≡ ∃x ¬ ∀y P(x , y) ≡ ∃x ∃y ¬ P(x , y)

¬ ∃x ∃y P(x , y) ≡ ∀x ¬ ∃y P(x , y) ≡ ∀x ∀y ¬ P(x , y)

Imdad ullah Khan (LUMS) Theory of Computation 6 / 41

Sets Summary

A set is an ordered collection of objects

Order and repetition of objects do not matter

Sets can be described in various ways

Empty set is a well-defined set with zero objects

Two sets are equal if and only if they have the same elements

A is the collection of all objects in universal set that are not in A

Cardinality of A is the number of distinct elements in A

Imdad ullah Khan (LUMS) Theory of Computation 7 / 41

Subsets: Summary

A is a subset of B if and only if every element of A is an element of B

A ⊆ B, A is subset of B, B is superset of A

Empty set is a subset of every set

Every set is a subset of itself

Power Set of A is the set of all subsets of A

Cardinality of power set of A with |A| = n is 2n

Imdad ullah Khan (LUMS) Theory of Computation 8 / 41

Set Operations

Set Operation (Binary)

Union

Intersection

Difference

Symmetric Difference

Generalized Union

Generalized Intersection

Imdad ullah Khan (LUMS) Theory of Computation 9 / 41

Set Equality

Equality of two sets can be proved using

Algebraic Rules (Set Identities)

Set Membership Tables

Logical Equivalence of membership predicates

By proving bidirectional subset relationships

Imdad ullah Khan (LUMS) Theory of Computation 10 / 41

Ordered Tuples and Cartesian Product: Summary

Ordered n-tuple (a1, a2, . . . , an) is an ordered collection of n objects

(a1, a2, . . . , an) = (b1, b2, . . . , bn) means ai = bi for 1 ≤ i ≤ n

Ordered 2-tuples (n = 2) are called ordered pairs

Cartesian product of sets A and B, A× B is
the set of all ordered pairs (x , y), where x ∈ A and y ∈ B

Cartesian product can be generalized to that of more than 2 sets∣∣A1 × A2 × . . .× An

∣∣ = |A1| × |A2| × . . .× |An|

Imdad ullah Khan (LUMS) Theory of Computation 11 / 41

Functions: Summary

f : X 7→ Y maps each element of X to exactly one element of Y

Let f : X 7→ Y and let f (x) = y

X is the domain of f

Y is the codomain of f

y is the image of x

x is the pre-image of y

Range of f : set of images of all elements of X

Functions can be represented by

Listing set of all (pre-image, image) ordered pairs

Bipartite Graph

Mapping Rule or Algebraic Expression

Programming Code

Imdad ullah Khan (LUMS) Theory of Computation 12 / 41

Types of functions: Summary

A function f : X 7→ Y is one-to-one (or injective) iff

∀ x1, x2 ∈ X (f (x1) = f (x2) → x1 = x2)

A function f : X 7→ Y is onto (or surjective) iff

for every element y ∈ Y there is an element x ∈ X with f (x) = y

A function f : X 7→ Y is one-to-one correspondence (or bijective) iff

it is both one-to-one and onto

If f : X 7→ Y is a bijection and X and Y are finite sets, then |X | = |Y |

Imdad ullah Khan (LUMS) Theory of Computation 13 / 41

Relations: Summary

A (binary) relation from X to Y is a subset of X × Y

A (binary) relation on a set X is a subset of X × X (relation from X
to X)

An n-ary relation is a subset of A1 × A2 × . . .× An

A binary relation can be represented by listing the ordered pairs, using
a bipartite graph, or with a binary matrix

Imdad ullah Khan (LUMS) Theory of Computation 14 / 41

Properties of Relations: Summary

A relation R on a set X is reflexive if (a, a) ∈ R for every element
a ∈ X

A relation R on a set X is symmetric if (b, a) ∈ R whenever
(a, b) ∈ R for all a, b ∈ X

A relation R on a set X is antisymmetric if a = b whenever
(a, b) ∈ R and (b, a) ∈ R

▷ A relation can be symmetric, antisymmetric, both or none

A relation R on a set X is transitive if whenever (a, b) ∈ R and
(b, c) ∈ R then (a, c) ∈ R

Imdad ullah Khan (LUMS) Theory of Computation 15 / 41

Equivalence Relation

Equivalence Relation

A relation R on a set X is an equivalence relation if it is

1 reflexive

2 symmetric, and

3 transitive

Relates “similar” elements

Generalize “equality”

Imdad ullah Khan (LUMS) Theory of Computation 16 / 41

Partial Order

Partial Order

A relation R on a set X is a partial order if it is

1 reflexive,

2 antisymmetric, and

3 transitive

Partial orders give an order to sets that may not have a natural one.

For example pre-requisite order to courses

Notation: a ≼ b ↔ (a, b) ∈ R and a ≺ b ↔ (a, b) ∈ R, a ̸= b

Pronounced as a preceeds b

Do not confuse ≼ with ≤ ≼ denotes partial ordering

Imdad ullah Khan (LUMS) Theory of Computation 17 / 41

Proofs

An argument that convincingly demonstrates the truth of a statement

In mathematics,

A proof is a chain of logical deductions that demonstrates the truth of a
proposition assuming the truth of some known axioms

Imdad ullah Khan (LUMS) Theory of Computation 18 / 41

Terminology

Axiom: A basic assumption about mathematical structure that is
accepted to be true. e.g.

There is a straight line between any two points

2 > 1

Theorem: Important proposition that has a proof

Lemma: Proposition that serves as an intermediate step in proof of a
theorem

Corollary: Proposition that follows directly (easily) from a theorem

Essentially a special case of the general statement of the theorem

Rules of Inference: The justification for the steps in the chain of
deductions in a proof

Fallacy: An incorrect reasoning or deduction

Imdad ullah Khan (LUMS) Theory of Computation 19 / 41

Proving Statements

Pythagoras‘s Theorem (∼ 500 BC)

a2 + b2 = c2 has solutions where a, b, and c are positive integers

= +c2 a2 b2

c
b

a

This statement is TRUE,

e.g. a = 3, b = 4, and c = 5

Imdad ullah Khan (LUMS) Theory of Computation 20 / 41

Proving Statements

Fermat’s Last Theorem (1637)

a3 + b3 = c3 has no solution where a, b, c are positive integers

Andrew Wiles (1994) proved this statement to be TRUE

Wiles announced “proof” on 23 June 1993

In September 1993, error was found in the proof

On 19 September 1994, Wiles corrected the proof

The corrected proof was published in 1995

Imdad ullah Khan (LUMS) Theory of Computation 21 / 41

Proving Statements

Euler Conjecture (1769)

a4 + b4 + c4 = d4 has no solutions where a, b, c , d are positive integers

Noam Elkies (1987) proved this statement FALSE

a = 2682440,

b = 15365639,

c = 18796760,

d = 20615673,

is a solution
source: Wikipedia

Imdad ullah Khan (LUMS) Theory of Computation 22 / 41

Proving Statements

Goldbach Conjecture (1742)

Every even integer > 2 is the sum of two primes

Sum of two primes at intersection
of two lines. (source: Wikipedia)

No one yet knows the truth value of
this statement

Every even integer ever checked is a
sum of two primes

Just one counter-example will
disprove the claim

Homework!

Imdad ullah Khan (LUMS) Theory of Computation 23 / 41

Proving Statements

Conjecture (1852)

Regions of any 2-d map can be colored with 4 colors so that no
neighboring regions have the same color

Imdad ullah Khan (LUMS) Theory of Computation 24 / 41

4-Coloring Theorem

Kempe (1879) announced a proof

Tait (1880) announced an alternative proof

Heawood (1890) found a flaw in Kempe’s proof

Petersen (1881) found a flaw in Tait’s proof

Heesch (1969) reduced the statement to checking a large number of cases

Appel & Haken (1976) gave a “proof”, that involved a computer program
to check 1936 cases (1200 hours of computer time)

Robertson et.al. (1997) gave another simpler “proof” but still involved
computer program

UIUC stamp in honor of the 4-Color theorem

No human can check all the cases

What if the program has a bug

What if the compiler/system
hardware has a bug

Imdad ullah Khan (LUMS) Theory of Computation 25 / 41

Direct Proofs

Direct Proof: used to prove statement of the form P → Q

1 Assume that P is true

2 With a chain of logical deductions conclude that Q is true

P Q P → Q

T T T
T F F
F T T
F F T

When P is false, P → Q is already true irrespective of value of Q

The only case when P → Q is false, is when P = T and Q = F

Hence our goal is to rule out that possibility

Imdad ullah Khan (LUMS) Theory of Computation 26 / 41

Proof by Contrapositive

Recall that an implication is equivalent to it’s contrapositive

P → Q ≡ ¬Q → ¬P

Direct Proof to show P → Q

Assume P is true, logically deduce that Q is also true

Proof by Contrapositive to show P → Q

apply the direct proof method to it’s contrapositive (¬Q → ¬P)

Just a restatement of the given statement rather than a proof method

Imdad ullah Khan (LUMS) Theory of Computation 27 / 41

Proof by Contradiction

Suppose we want to prove some statement P to be true

In proof by contradiction we argue that

if P is not true, then some contradiction must occur

1 Assume that P is false

2 Show that from this (¬P) we can logically deduce some contradiction

The contradiction can be to

the assumption ¬P

implying both P and ¬P are simultaneously true, a contradiction

or to some known true statement S

implying S is false, meaning both S and ¬S are simultaneously true

Imdad ullah Khan (LUMS) Theory of Computation 28 / 41

Function: List Representation

Let X and Y be two sets. A function f maps each element of X to
exactly one element of Y

Let X be the domain with its elements ordered x1, x2 . . . ,

f : X 7→ Y can be represented as a list f (x1), f (x2), f (x3), . . .

Images of x1, x2, . . . listed in the order of X

Imdad ullah Khan (LUMS) Theory of Computation 29 / 41

Properties of functions as lists

Let f : X 7→ Y be represented as list

f : X 7→ Y is one-to-one if every y ∈ Y appears at most once in the list

f : X 7→ Y is onto if every y ∈ Y appears at least once in the list

f : X 7→ Y is bijection if every y ∈ Y appears exactly once in the list

If f : X 7→ Y is a bijection and X and Y are finite sets, then |X | = |Y |

For finite sets X and Y , |X | = |Y | iff there is a bijection f : X 7→ Y

Imdad ullah Khan (LUMS) Theory of Computation 30 / 41

Cardinality of infinite sets

We showed that

|integer powers of 2 and other integers| = |N|

|powers of all integers| = |N|

|Z| = |N|

“size/2 = size”. Surprised!

I see it, but I don’t believe it!

George Cantor (in a letter to Dedekind, 1877)

This notion of cardinality enables us to reason about infinity

Imdad ullah Khan (LUMS) Theory of Computation 31 / 41

Countability

A set S is countable if it is either finite or has the same cardinality as N

S is countable if it can be placed in a one-to-one correspondence with N

S is countable in the following sense

If we count (write, print, list) one element of S per ‘second’, then any
particular element of S will be counted after a finite time

This means we can list element of S like

a1, a2, a3, a4, a5, · · ·

Note: We do not say that the whole set will be printed

Imdad ullah Khan (LUMS) Theory of Computation 32 / 41

Countability

A set S is countable if it is either finite or has the same cardinality as N

The following sets are countable

Z
O and E, odd and even integers

Integer powers of 2

Integer powers of other integers

Squares, cubes and any power of integers

Q+, the set of +ve rational numbers

Imdad ullah Khan (LUMS) Theory of Computation 33 / 41

Countability

Are all infinite sets of the same size (countable)?

No

Cantor invented a very important technique,

DIAGNOLIZATION

to show how to find bigger infinity

The set I of real numbers between 0 and 1 is not countable

Imdad ullah Khan (LUMS) Theory of Computation 34 / 41

Proof by Induction

A proposition about non-negative integers, ∀ n P(n) is a sequence of
propositions (dominoes)

P(0),P(1),P(2), . . . ,P(n),P(n + 1), . . .

Establish two facts

Prove P(0)

the first domino falls

Prove ∀k ≥ 0,P(k) → P(k + 1)

if a domino falls, then the next domino also falls

Conclude that P(n) is true for all n

all dominoes fall

. . .

1 2 3 4 5 6 7

.

i

i+ 1

. . .

1 2 3 5 6 74

Principle of Mathematical Induction[
P(0) ∧ ∀k ≥ 0

[
P(k) → P(k + 1)

]]
−→ ∀n ≥ 0P(n)

Imdad ullah Khan (LUMS) Theory of Computation 35 / 41

Strong Induction

Principle of Mathematical Induction[
P(0) ∧ ∀k ≥ 0

[
P(k) → P(k + 1)

]]
−→ ∀n ≥ 0P(n)

Proof using Induction

Basis Step: Prove P(0) is true

IH: Assume P(n)

Inductive Step: Using P(n), prove P(n + 1)

Principle of Strong Mathematical Induction[
P(0) ∧ ∀k ≥ 0

[
∀ 0 ≤ i ≤ k P(i) → P(k + 1)

]]
−→ ∀n ≥ 0P(n)

Proof using Strong Induction

Basis Step: Prove P(0) is true

IH: Assume P(k) is true for all 1 ≤ k ≤ n

IS: Using ∀ k ≤ n P(k), prove P(n + 1)

Imdad ullah Khan (LUMS) Theory of Computation 36 / 41

How to write proofs

Do not worry about your difficulties in Mathematics. I can assure you
mine are still greater.

Albert Einstein

I don’t have any magical ability...I look at the problem, and it looks
like one I’ve already done. When nothing’s working out, then I think
of a small trick that makes it a little better. I play with the problem,
and after a while, I figure out what’s going on.

Terry Tao

Imdad ullah Khan (LUMS) Theory of Computation 37 / 41

How to write proofs

Understand the problem

List what is given to you

Write down what you need to derive

Unpack definitions

Imdad ullah Khan (LUMS) Theory of Computation 38 / 41

How to write proofs

Figure out some meaningful special cases

n = 1, n = 0,

empty set

Boundary cases, extreme cases, easy case

Put yourself in the mind of the adversary, worst-case
examples/scenarios?

Imdad ullah Khan (LUMS) Theory of Computation 39 / 41

How to write proofs

Simplify the problem

Develop good notation, Rephrase the problem

Focus on simple version/cases at first

Use paper, draw pictures, Draw picture

Imdad ullah Khan (LUMS) Theory of Computation 40 / 41

How to write proofs

Try Different Techniques

Direct, Contrapositive, Contradiction, Case Analysis, Induction

Focus on simple version/cases at first

Use paper, draw pictures, make tables

Imdad ullah Khan (LUMS) Theory of Computation 41 / 41

