Theory of Computation

NP-HARD and NP-COMPLETE Problems

m NP-HARD and NP-COMPLETE Problems

m A first NP-COMPLETE Problem: CIRCUIT-SAT(C)

m The Cook-Levin Theorem: SAT is NP-COMPLETE

m NP-COMPLETE Problems from known Reductions

m NP-COMPLETE ness of DIR-HAM-CYCLE and HAM-CYCLE
m TSP is NP-COMPLETE

m SUBSET-SUM is NP-COMPLETE

® PARTITION is NP-COMPLETE
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Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
X € NP
VYeENPY <, X

How to prove a problem NP-COMPLETE?

To prove X to be NP-COMPLETE

Prove X € NP

Reduce some known NP-COMPLETE problem Z to X

Again! Reduce a known NP-COMPLETE problem to X

> Not the other way round. A very common mistake!
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A first NP-COMPLETE Problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

m Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

m Levin proved six NP-COMPLETE problems (in addition to other results)

m We prove this by reducing CIRCUIT-SAT(C) problem to SAT(f) problem

IMDAD ULLAH KHAN (LUMS) NP-HARD and NP-COMPLETE Problems 3/22



A first NP-COMPLETE Problem

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

Where to begin? we need a first NP-COMPLETE Problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

m Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

m Levin proved six NP-COMPLETE problems (in addition to other results)

We prove the theorem by reducing CIRCUIT-SAT(C) problem to SAT(f) problem
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The Cook-Levin theorem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

We already showed that SAT is polynomial time verifiable

SAT € NP

Now we prove that

CIRCUIT-SAT(C) <, SAT(f)

This proves that SAT is NP-HARD and completes the proof
m Suppose A is an algorithm to decide SAT(f)
m Given an instance C of the CIRCUIT-SAT(C) problem
m In polynomial time we transform C into an equivalent CNF formula f
m Make a call A(f) to decide whether or not CIRCUIT-SAT(C) = Yes

IMDAD ULLAH KHAN (LUMS) NP-HARD and NP-COMPLETE Problems

5/22



The Cook-Levin theorem

CIRCUIT-SAT(C) <, SAT(f) J
Make a variable for each input wire and output X X .
of each gate of the circuit C' < )
2
X5
X3
For each not gate make equi-satisfiable clauses Xi "@. Xj
= These clauses are satisfied iff x; = x; (xi Vx5) A (K V)

For each and gate make equi-satisfiable clauses Xi
m These clauses are satisfied iff xx = x; A x5 X; ></D. Xk
(%3 VX)) A (x5 VXi) A (X VXV Xk)
For each or gate make equi-satisfiable clauses
m These clauses are satisfied iff x; = x; V x5 .><\D.
(xl\/xk) (X5 V xK) A (x5 Vx5V Xg)
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The Cook-Levin theorem

CIRCUIT-SAT(C) <, SAT(f) J

m Easy to verify that the gates and corresponding formula are equisatisfiable

m The output gate value is encoded with a clause containing the
corresponding variable

m The final formula f is a grand conjunction of all the clauses made for each
gate and output of the circuit C

f is equisatisfiable with the C

> i.e. CIRCUIT-SAT(C) = Yes if and only if A(f) = Yes

The reduction takes polynomial time, requires one traversal of the DAG,
constant time per gate
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Implied NP-COMPLETE Problems

From known reductions, the following problems are NP-COMPLETE

NP
B SAT <, 3-SAT <
Sp FI
CIRCUIT-$
m 3-SAT <, IND-SET |Lcmour-sat
<p
m IND-SET Sp CLIQUE SAT
| =
m IND-SET <, VERTEX-COVER
P | 3-saT |
B VERTEX-COVER §p SET-COVER =
< <
Sy [ e e D —
® IND-SET <, SET-PACKING S
_ <, - J )
< <»
‘/SET—PACKINGJ | CLIQUE |

We show a few more reductions to prove problems to be NP-COMPLETE
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DIR-HAM-CYCLE is NP-COMPLETE

We showed DIR-HAM-CYCLE to be in NP for NP-HARDNESS we prove

3-sAT(f) <, DIR-HAM-CYCLE(G) )

Let f be an instance of 3-SAT on n variables and m clauses
Let x1,...,x, be the variables and Gy, ..., C,, be the clauses of f

Construct a digraph G that has a Hamiltonian cycle iff f is satisfiable

In G there will be 2" sub-Hamiltonian cycles corresponding to the 2"
possible assignments to variables xi, . .., x,

We introduce a structure for each clause such that these sub-Hamiltonian
cycles can be combined if and only if all clauses are satisfiable
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) J

For each x; make a sequence of 3(m + 1) bidirectionally adjacent vertices

m x; =1 = traverse this gadget from L; to R; and vice-versa
] (X,',X,'+1) = (1, 0) — traverse from L; — R; — R,'Jr]_ — L,'+1

m (x;,x+1) = (0,0) = traverse from R; — L; = Riz1 — Lit1

-

o e OO O
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) J

Make nodes s and t and combine all the gadgets as follows
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G) J

m 2" Ham cycles traversing each gadget in either direction
m These correspond to the 27 possible assignments to the n variables
m Make a Hamiltonian cycle exist iff there is a satisfying assignment
m Have to incorporate clauses. Make nodes for each clause

If a variable satisfy a clause, traverse it by a detour from that gadget

Cr = (h,T, 1) Ca = (I3, 24, 1a)
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DIR-HAM-CYCLE is NP-COMPLETE

3-sAT(f) <, DIR-HAM-CYCLE(G)

Given f, make G as described above

G has a directed Hamiltonian cycle iff f is satisfiable

The construction takes polynomial time (about O(nm))
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DIR-HAM-PATH is NP-COMPLETE

DIR-HAM-CYCLE(G) <, DIR-HAM-PATH(G') ]

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G) problem

m For any arbitrary v € V, make G’ on V(G) \ {v} U {Vin, Vour }
> i.e. remove v and add two new vertices v;, and vou;

m vj, has all incoming edges of v directed to it from in-neighbors of v

m v, has all outgoing edges of v directed from it to out-neighbors of v

G has a directed Hamiltonian cycle iff G’ has a directed Hamiltonian path )
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HAM-CYCLE is NP-COMPLETE

We proved its polynomial time verifiability earlier, now we show that

DIR-HAM-CYCLE(G) <, HAM-CYCLE(G’) ]

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G). |V|=n, |E|=m

m Make an undirected graph G’ = (V',E), |[V/|=3nand |E'| = m+ 2n

Split every vertex v € V into three vertices v,, Vg, Vor and add to V’

Add edges (Vin, Vmg) and (Vimd, Vo) in E’

m For each directed edge (x,y) € E, make the edge (Xot, yin) in E’

© OREES @
® ()
{L—® (en)—Lemp—(eaf—()
© @)
@ © @ ©
G has a dir-Ham cycle iff G’ has an (undirected) Hamiltonian cycle J
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TSP is NP-COMPLETE

HAM-CYCLE(G) <, TSP(G', k)

m TSP(G’, k) requires weighted graph and a number k

m Given an instance G = (V/, E) of HAM-CYCLE(G), |V|=n

m Make a complete graph on n vertices G’ with weights as follows

1 if (vi,vj) € E(G)

wivis vj) = 2 else

No Hamiltonian

TSP tour in G’ of
of length shown in blue cycle in G

Hamiltonian cycle
in G shown in blue

No TSP tour of
length 5 in G'

G has a Hamiltonian cycle iff G’ has a TSP tour of length k = n J
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SUBSET-SUM is NP-COMPLETE

SUBSET-SUM is NP-COMPLETE

m Given a set U = {a;,ay,...,a,} of integers
m A weight function w : U — Z*, and a positive integer C

m The SUBSET-SUM(U, w, C) problem: Is there a S C U wiht > w; = C?
a;eS

m If w;'s and C are given in unary encoding

m then O(nC) dynamic programming solution is a polynomial time
m But this is exponential in size of input if C is provided in binary (or decimal)

We prove that

3-SAT(f) <, SUBSET-SUM(e,e,s) J
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SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,e,s)

Given an instance f of 3-SAT(f) with n variables and m clauses
Construct 2n + 2m weights: 2 objects for each variable and each clause

Each is a n 4+ m-digits integer (a digit for each variable and each clause)

The digit for clause C; is 1 if the literal appears in clause C;

Tn—1 zp C1 Cy2 C3

Cr=(x1VaaVT3), Co=(21Va2VT3), C3 = (T1 VT2V T3)
Crm—1 = (x2 Vs Vaxg), Crn = (2 V23V T5)
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SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,s,e) J

m Remaining 2m weights set so as last sum of digits at each position from

n+lton+misbh > details in notes

T xp T3 Tp-1 xn, C1 Ca C3 Crn-1 Cm
Tl 1(1 ::
EdE 1 ::
X 1 1(1 ZZ
k2t 1 1 ::
; BN
T3 1 111 ::
o TTTTITI ) LTI T) [
=TI LI [1]
1 mE

1
1 Ll
1 Ll
LTIl Ly~
FTTTTT Tl TT T
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SUBSET-SUM is NP-COMPLETE

3-SAT(f) <, SUBSET-SUM(e,s,e)

[

B R

The SUBSET-SUM instance with 2n + 2m weights as shown above and

n m

/_/%/_/% . . . . .
C =111...,11333...33 is Yes if and only the f is satisfiable
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PARTITION is NP-COMPLETE

SUBSET-SUM(U, w, C) <, PARTITION(U', k) J
mlet U ={wi,wo,..., W, , Wpi1, Wny2}
n n
] Wn+1=2[ZW,']—C and W,H_QZ[ZW;]—!-C
i=1 i=1

SUBSET-SUM(U, w, C) = Yes iff PARTITION(U’,0) = Yes (balanced) J

B> x= ) W;+2[ZW,'] —C—i—[zw,-] +C=45% w
xeU’ ajcel i—1 i1 aiel
Whnt1 Wn+2

m Let P; and P, be a balanced bipartition of U’
m Both w,y; and w,, cannot be in the same part, assume w,;1 € P;

m Both P; and P, cannot contain only one element, so > wy, = C
XePl\{Wn+1}
P Py
wn+1=22iwi_0 C wn+2=ziwi+c Ziwi—C

IMDAD ULLAH KHAN (LUMS) NP-HARD and NP-COMPLETE Problems 21/22



NP-COMPLETE Problems

21 problems were shown to be NP-COMPLETE in a seminal paper: Richard Karp
(1972), "Reducibility Among Combinatorial Problems”
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