Theory of Computation

NP-Hard and NP-Complete Problems

■ NP-Hard and NP-Complete Problems

- A first NP-Complete Problem: Circuit-sat(C)
- The Cook-Levin Theorem: sat is NP-Complete

■ NP-Complete Problems from known Reductions

- NP-COMPLETE ness of DIR-HAM-CYCLE and HAM-CYCLE

■ TSP is NP-Complete

- Subset-Sum is NP-Complete

■ PARTItIon is NP-Complete

Imdad ullah Khan

NP-Hard and NP-Complete

A problem X is NP-HARD, if every problem in NP is polynomial time reducible to X

$$
\forall Y \in N P, \quad Y \leq_{p} X
$$

A problem $X \in$ NP is NP-Complete, if every problem in NP is polynomial time reducible to X

$$
X \in \text { NP } \quad \text { and } \quad \forall Y \in N P, \quad Y \leq_{p} X
$$

NP-Hard and NP-Complete

A problem $X \in$ NP is NP-Complete, if every problem in NP is polynomial time reducible to X

$$
X \in \mathrm{NP} \quad \text { AND } \quad \forall Y \in \mathrm{NP}, \quad Y \leq_{p} X
$$

These problems are at least as hard as any problem in NP
Let NPC be the (sub)class of NP-COMPLETE problems
\triangleright It is the set of hardest problems in NP

If any NP-complete problem can be solved in poly time, then all problems in NP can be, and thus $\mathrm{P}=\mathrm{NP}$

NP-Complete Problems

A problem X is NP-Complete, if
$1 \quad X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

$$
\mathrm{P} \subseteq \mathrm{NP} \quad \mathrm{NPC} \subseteq \mathrm{NP}
$$

- Take any $X \in \mathrm{NP}$ and prove that it cannot be solved in poly time
- You proved $\mathrm{P} \neq \mathrm{NP}$ Why?
- By definition of \subset

■ Take any $X \in$ NPC and solve it in poly time
■ You proved $\mathrm{P}=\mathrm{NP}$ Why?

- By definition of \leq_{p}

NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

No polynomial time algorithm for any NP-COMPLETE problem yet
\triangleright People did and do try, as many practical problems are in NPC

No impossibility proof of poly-time solution for a NP-COMPLETE problem
\triangleright People did and do try, will prove the widely held belief that $\mathrm{P} \neq \mathrm{NP}$

Let X be any NP-Complete problem.
X is polynomial time solvable if and only if $\mathrm{P}=\mathrm{NP}$

NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

Why should you prove a problem to be NP-COMPLETE?

- Good evidence that it is hard

■ Unless your interest is proving $\mathrm{P}=\mathrm{NP}$ stop trying finding efficient algorithm \triangleright Instead focus on special cases, heuristic, approximation algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

1 I am too dumb!
2 There is no fast algorithm! You claim that $\mathrm{P} \neq \mathrm{NP}$
3 I cannot solve it, but neither can anyone in the world!

NP-Complete Problems

Dealing with Hard Problems

- What to do when we find a problem that looks hard...

Dealing with Hard Problems

- Sometimes we can prove a strong lower bound... (but not usually)

I couldn't find a polynomial-time algorithm because no such algorithm exists!

Dealing with Hard Problems

- NP-completeness let's us show collectively that a problem is hard.

I couldn't find a polynomial-time algorithm, but neither could all these other smart people.
source: slideplayer.com via Google images

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
$2 \forall Y \in \operatorname{NP} Y \leq_{p} X$
NP-Complete problems capture the essential difficulty of all NP problems Could there be any NP-Complete problem at all?

- Not very hard to imagine (an almost formal proof later)
- Let A be a polynomial time algorithm working on bit-strings that outputs Yes/No based on some unknown but consistent logic
- H is the problem: "Is there any polynomial sized bit-string on which A outputs Yes?" Clearly $H \in N P$?
- Any problem $Y \in \mathrm{NP}$ is reducible to H
- $Y \in$ NP means there is a poly-sized certificate that can be verified. An instance \mathcal{I} of Y can be transformed to an instance of H with same answer

How to prove NP-Completeness

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
$2 \forall Y \in \operatorname{NP} Y \leq_{p} X$

How to prove a problem NP-Complete ?

- Proving NP is relatively easy (in many cases)

■ Can we do so many reductions?

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Suppose $A \leq{ }_{p} B$.
If B is polynomial time solvable, then A can be solved in polynomial time

Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Suppose $A \leq{ }_{p} B$.
If A is NP-Complete, then B is NP-Complete

$$
\triangleright \text { Why? }
$$

Proving NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
$2 \forall Y \in \operatorname{NP} Y \leq_{p} X$

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and
$1 X \in \mathrm{NP}$
then X is NP-Complete
$2 Z \leq_{p} X$
$1 X \in$ NP is explicitly proved
$2 \forall Y \in \mathrm{NP}, \quad Y \leq_{p} X$ follows by transitivity
$\forall Y \in \mathrm{NP}, \quad Y \leq_{p} Z$ is true as Z is NP-Complete
$\left[Y \leq_{p} Z \wedge Z \leq_{p} X\right] \Longrightarrow Y \leq_{p} X$

Proving NP-Complete Problems

A problem X is NP-Complete, if
$1 X \in \mathrm{NP}$
2 $\forall Y \in \operatorname{NP} Y \leq_{p} X$

How to prove a problem NP-COMPLETE?

- Proving NP is relatively easy
- Can we do so many reductions?

Template of proving problems to be NP-Complete

We proved that
$\operatorname{Clique}(G, k)$ is NP-Complete
Suppose we have the theorem
Then we can conclude that
$\operatorname{CLIQUE}(G, k) \leq_{p} \operatorname{IND-SET}(G, k)$
ind-Set (G, k) is NP-Complete

