
Theory of Computation

NP-Hard and NP-Complete Problems

NP-Hard and NP-Complete Problems

A first NP-Complete Problem: circuit-sat(C )

The Cook-Levin Theorem: sat is NP-Complete

NP-Complete Problems from known Reductions

NP-Complete ness of dir-ham-cycle and ham-cycle

tsp is NP-Complete

subset-sum is NP-Complete

partition is NP-Complete
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NP-Hard and NP-Complete

A problem X is NP-Hard, if every problem in NP is polynomial time
reducible to X

∀ Y ∈ NP, Y ≤p X

A problem X ∈ NP is NP-Complete, if every problem in NP is
polynomial time reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X
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NP-Hard and NP-Complete

A problem X ∈ NP is NP-Complete, if every problem in NP is
polynomial time reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X

These problems are at least as hard as any problem in NP

Let NPC be the (sub)class of NP-Complete problems

▷ It is the set of hardest problems in NP

If any NP-complete problem can be solved in poly time, then all problems
in NP can be, and thus P = NP
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NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

NP

P

EXP

Computable
Problems

Computational
Problems

NPC

P ⊆ NP NPC ⊆ NP

Take any X ∈ NP and prove that it cannot be
solved in poly time

You proved P ̸= NP Why?

By definition of ⊂

Take any X ∈ NPC and solve it in poly time

You proved P = NP Why?

By definition of ≤p
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NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

No polynomial time algorithm for any NP-Complete problem yet

▷ People did and do try, as many practical problems are in NPC

No impossibility proof of poly-time solution for a NP-Complete problem

▷ People did and do try, will prove the widely held belief that P ̸= NP

Let X be any NP-Complete problem.

X is polynomial time solvable if and only if P = NP
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NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

Why should you prove a problem to be NP-Complete?

Good evidence that it is hard

Unless your interest is proving P = NP stop trying finding efficient algorithm

▷ Instead focus on special cases, heuristic, approximation algorithm

What to tell your boss if you fail to find a fast algorithm for a problem?

1 I am too dumb! ▷ You are fired

2 There is no fast algorithm! You claim that P ̸= NP ▷ Need a proof

3 I cannot solve it, but neither can anyone in the world! ▷ Need reduction
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NP-Complete Problems

source: slideplayer.com via Google images
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NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

NP-Complete problems capture the essential difficulty of all NP problems

Could there be any NP-Complete problem at all?

Not very hard to imagine (an almost formal proof later)

Let A be a polynomial time algorithm working on bit-strings that outputs
Yes/No based on some unknown but consistent logic

H is the problem: “Is there any polynomial sized bit-string on which A
outputs Yes?” Clearly H ∈ NP?

Any problem Y ∈ NP is reducible to H

Y ∈ NP means there is a poly-sized certificate that can be verified. An
instance I of Y can be transformed to an instance of H with same answer
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How to prove NP-Completeness

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

How to prove a problem NP-Complete ?

Proving NP is relatively easy (in many cases)

Can we do so many reductions?
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Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A ≤p B.

If B is polynomial time solvable, then A can be solved in polynomial time
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Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A ≤p B.

If A is NP-Complete, then B is NP-Complete

▷ Why?
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Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and 1 X ∈ NP

2 Z ≤p X
then X is NP-Complete

1 X ∈ NP is explicitly proved

2 ∀ Y ∈ NP, Y ≤p X follows by transitivity

∀ Y ∈ NP, Y ≤p Z is true as Z is NP-Complete

[Y ≤p Z ∧ Z ≤p X ] =⇒ Y ≤p X
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Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

How to prove a problem NP-Complete?

Proving NP is relatively easy

Can we do so many reductions?

Template of proving problems to be NP-Complete

We proved that

Suppose we have the theorem

Then we can conclude that

clique(G , k) is NP-Complete

clique(G , k) ≤p ind-set(G , k)

ind-set(G , k) is NP-Complete
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