
Theory of Computation

Polynomial Time Reduction

Polynomial Time Reduction Definition

Reduction by Equivalence

Reduction from Special Cases to General Case

Reduction by Encoding with Gadgets

Transitivity of Reductions

Decision, Search and Optimization Problem

Self-Reducibility

Imdad ullah Khan

Imdad ullah Khan (LUMS) Polynomial Time Reduction 1 / 16



Versions of Problems: Decision Problems

Decision Problem

Sometimes called decision version of a problem

These problems can be characterized by their algorithms whose
output is either Yes or No

In other words the answer on an instance is either Yes or No

sat, 3-sat are decision problems

So are all the other problems we studied so far

ind-set(G , k), vertex-cover(G , k), prime(n),
clique(G , k), set-cover(U,S, k), subset-sum(U,w ,C )

Imdad ullah Khan (LUMS) Polynomial Time Reduction 2 / 16



Versions of Problems: Search Problems

Search Problem

Some times called search version of a problem

These problems ask for a structure satisfying certain property or
Not-Found= NF flag

The expected answer on an instance is not (necessarily) Yes or No

Search versions of sat, 3-sat ask for a satisfying assignment

output is n-bit string (specifying ordered values for variables) or NF

Search version of ind-set(G , k) asks for an ind. set of size k in G

output is a subset of vertices or NF

Search version of set-cover(U,S, t)
output is a t-sized sub collection of S or NF

Imdad ullah Khan (LUMS) Polynomial Time Reduction 3 / 16



Versions of Problems: Optimization Problems

Optimization Problem

These problems ask for a structure that satisfy certain property
(feasibility) and no other feasible structure have better value

these are search problem but searching for an optimal structure

Optimization versions of sat, 3-sat ask for an assignment satisfying
the most number of clauses

output is n-bit string (specifying ordered values for variables)

Optimization problems ind-set(G ), clique(G ) ask for largest
independent set or clique in a graph G

min-vertex-cover(G ) asks for a vertex cover of minimum size

tsp(G ) asks for a minimum cost tsp tour

As in DP, sometimes we only need value of the optimal solution

Imdad ullah Khan (LUMS) Polynomial Time Reduction 4 / 16



Versions of Problems

Decision Problem: answer is Yes/No

Search Problem: answer is a feasible structure of certain value or NF

Optimization Problem: answer is a feasible structure of optimal value

Some authors only use decision problems and search problems.
Search problem there actually means the optimization problem

This perhaps is a better notion, since if you know value of the optimal
solution (which can be found through decision version of the problem),
then one can use search problem (our notion) with the input value
equal to the optimal value

In some cases there is no reasonable notion of optimization version
e.g. Hamiltonian cycle problem and 3-coloring problem

Imdad ullah Khan (LUMS) Polynomial Time Reduction 5 / 16



Versions of Problems: Self Reducibility

Are versions of a problem polynomial time reducible to each other?

Many search and optimization problems are only polynomially more
difficult than corresponding decision problem

Any efficient algorithm for the decision problem can be used to solve
the search problem efficiently

This is called self-reducibility

All the problems we discuss exhibit self-reducibility

Imdad ullah Khan (LUMS) Polynomial Time Reduction 6 / 16



Versions of Problems: Self Reducibility

Are versions of a problem polynomial time reducible to each other?

Many search and optimization problems are only polynomially more
difficult than corresponding decision problem

Any efficient algorithm for the decision problem can be used to solve
the search problem efficiently

This is called self-reducibility

All the problems we discuss exhibit self-reducibility, where appropriate

≤p

max-ind-setsrch-ind-setdec-ind-set
≤p

≤p

By transitivity of reductions, all versions are equivalent

Imdad ullah Khan (LUMS) Polynomial Time Reduction 7 / 16



Versions of Problems: Self Reducibility

Are versions of a problem polynomial time reducible to each other?

dec-ind-set(G , k) ≤p max-ind-set(G )

Proof:

Suppose A is an algorithm for max-ind-set(G )

Given an instance [G , k] of dec-ind-set(G , k)

Call A on G

if the returned independent set is of size ≥ k , then return Yes

else return No

Need to check size of the returned set (polynomial time)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 8 / 16



Versions of Problems: Self Reducibility

dec-ind-set(G , k) ≤p srch-ind-set(G , k)

Proof:

Suppose A is an algorithm for srch-ind-set(G , k)

Given an instance [G , k] of dec-ind-set(G , k)

Call A on [G , k]

if it returns an independent set, then return Yes

else if it returns NF, then return No

Imdad ullah Khan (LUMS) Polynomial Time Reduction 9 / 16



Versions of Problems: Self Reducibility

srch-ind-set(G , k) ≤p max-ind-set(G )

Proof:

Suppose A is an algorithm for max-ind-set(G )

Given an instance [G , k] of srch-ind-set(G , k)

Call A on G

if returned independent set is of size ≥ k , then return the set (or any k
vertices out of it)

else return NF

Need to check size of the returned set and select k of it (poly-time)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 10 / 16



Versions of Problems: Self Reducibility

srch-ind-set(G , k) ≤p dec-ind-set(G , k)

Let A be an algorithm for dec-ind-set(G , k). Using A
for each vertex we determine if it is needed for an ind. set of size k

Algorithm Algorithm for srch-ind-set(G , k) problem

I ← ∅ ▷ Initialize an empty independent set
t ← k
for v ∈ V (G ) do

ans ← A(G \ {v}, t)
if ans = yes then

V (G )← V (G ) \ {v}
else

V (G )← V (G ) \ {v}
I ← I ∪ {v}
t ← t − 1

Imdad ullah Khan (LUMS) Polynomial Time Reduction 11 / 16



Versions of Problems: Self Reducibility

max-ind-set(G ) ≤p dec-ind-set(G , k)

Suppose A is an algorithm for dec-ind-set(G , k)

First find the size of maximum independent set (optimal value)

For t ≥ 1, call A on [G , t]

If it outputs Yes increment t until the output is No

Let k be the last t for which there is a Yes answer

This k is the size of max independent set

Search for ind. set of size k using the previous algorithm

Note that it uses monotonicity of independent sets

Should use binary search for the last Yes answer, Why?

In some cases it may be essential to keep reduction polynomial time

Imdad ullah Khan (LUMS) Polynomial Time Reduction 12 / 16



Self Reducibility: Hamiltonian Path

srch-ham-path(G ) ≤p dec-ham-path(G )

Let A be an algorithm for dec-ham-path(G )

Call A on G , if it returns No then return NF

For each vertex v , call A on G \ {v}
select or de-select v? All vertices have to be in Ham path

For each edge e = (u, v), call A on G \ {e}
If it returns Yes, then e is not needed for Ham path, remove e from G

If it returns No, then e is needed

In the end, only edges of a Ham path will remain

Imdad ullah Khan (LUMS) Polynomial Time Reduction 13 / 16



Self Reducibility: Vertex Cover

srch-vertex-cover(G , k) ≤p dec-vertex-cover(G , k)

Suppose A is an algorithm for dec-vertex-cover(G , k)

Call A on G and k, if it returns No, then return NF

For each vertex v , call A on G \ {v} and k

If G has cover of size k , then G \ {v} has a VC of size k

whether or not v is in the cover
We will get Yes answer in both cases

Call A on G \ {v} and k − 1, if it returns Yes, then v ∈ k-sized cover

If it returns No, then v is not part of any k-sized cover

Imdad ullah Khan (LUMS) Polynomial Time Reduction 14 / 16



Self Reducibility: Vertex Cover

srch-vertex-cover(G , k) ≤p dec-vertex-cover(G , k)

Suppose A is an algorithm for vertex-cover(G , k)

Call A on G and k, if it returns No, then return NF

For each vertex v , call A on G \ {v} and k

G \ {v} has a VC of size k whether or not v is in the cover.

Call A on G \ {v} and k − 1, if it returns Yes, then v ∈ k-sized cover

If it returns No, then v is not part of any k-sized cover

Algorithm for srch-ind-set(G , k) using A for dec-ind-set(G , k)

1: C ← ∅, t ← k
2: for v ∈ V (G ) = {v1, . . . , vn} and while t ≥ 1 do
3: ans ← A(G \ {v}, t − 1)
4: if ans = Yes then
5: C ← C ∪ {v}
6: t ← t − 1

7: V (G )← V (G ) \ {v}
Imdad ullah Khan (LUMS) Polynomial Time Reduction 15 / 16



Caution for Self Reducibility

CAUTION! self-reducibility does not mean that “any algorithm solving the
decision version must use a solution of the search version”

The search version of factor(n, k) problem is in a sense the ‘complement of
the prime(n) (and composite(n)) problem

factor(n): Find a factor of n else output NF ⇔ (n is prime)

The famous AKS (2004) theorem on primality testing uses involved number
theory to solve the prime(n) and composite(n) problem, but does not solve
the search problem factor(n) (no polynomial time algorithm is yet known for it)

In other words, there are search versions of the problem that are not known to be
reducible to their decision versions

We focus on decision problems (or decision version of problems)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 16 / 16


