Theory of Computation

Polynomial Time Reduction

- Polynomial Time Reduction Definition
- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

We used the following techniques for reduction

- Simple Equivalence
- Special Case to General Case
- Encoding with Gadgets

A very powerful technique is to exploit transitivity of reductions
Theorem: If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$
\triangleright Polynomial time reduction is a transitive relation

Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$
Proof: Let \mathcal{A}_{Z} be an algorithm for Z

- Given any instance I_{X} of X we will solve X on I_{X} using \mathcal{A}_{Z}^{+}
- There is an algorithm \mathcal{A}_{Y} for Y using \mathcal{A}_{Z}^{+}(maybe many others too)
- There is an algorithm \mathcal{A}_{X} for X using \mathcal{A}_{Y}^{+}
- $\mathcal{B}_{\mathcal{X}}$: the new algorithm for X uses everything as of \mathcal{A}_{X} but it uses the specific algorithm \mathcal{A}_{Y} that is built upon \mathcal{A}_{Z}
\triangleright We essentially compose the two reductions into one

Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$

Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$

Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If $X \leq_{p} Y$ and $Y \leq_{p} Z$, then $X \leq_{p} Z$
Transitivity is an extremely useful property of reduction

- $\operatorname{SAT}(f) \leq_{p} 3$-SAT $\left(f^{\prime}\right)$ and $3-\operatorname{SAT}(f) \leq_{p} \operatorname{IND-SET}(G, k)$
- From these we conclude that $\operatorname{SAT}(f) \leq_{p} \operatorname{IND-SET}(G, k)$
- $\operatorname{SAT}(f) \leq_{p} 3-\operatorname{SAT}\left(f^{\prime}\right) \leq_{p} \operatorname{IND-SET}(G, k) \leq_{p} \operatorname{VERTEX-COVER}(G, t) \leq_{p}$ $\operatorname{SET}-\operatorname{Cover}(U, \mathcal{S}, I)$
- From these we conclude that $\operatorname{SAT}(f) \leq_{p} \operatorname{SET}-\operatorname{cover}(U, \mathcal{S}, /)$
- And many others

