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Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

We used the following techniques for reduction

Simple Equivalence

Special Case to General Case

Encoding with Gadgets

A very powerful technique is to exploit transitivity of reductions

Theorem: If X ≤p Y and Y ≤p Z , then X ≤p Z

▷ Polynomial time reduction is a transitive relation
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Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Theorem: If X ≤p Y and Y ≤p Z , then X ≤p Z

Proof: Let AZ be an algorithm for Z

Given any instance IX of X we will solve X on IX using A+
Z

There is an algorithm AY for Y using A+
Z (maybe many others too)

There is an algorithm AX for X using A+
Y

BX : the new algorithm for X uses everything as of AX but it uses the
specific algorithm AY that is built upon AZ

▷ We essentially compose the two reductions into one
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Polynomial time reduction is a transitive relation
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Polynomial time reduction is a transitive relation

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Theorem: If X ≤p Y and Y ≤p Z , then X ≤p Z

Transitivity is an extremely useful property of reduction

sat(f ) ≤p 3-sat(f ′) and 3-sat(f ) ≤p ind-set(G , k)

From these we conclude that sat(f ) ≤p ind-set(G , k)

sat(f ) ≤p 3-sat(f ′) ≤p ind-set(G , k) ≤p vertex-cover(G , t) ≤p

set-cover(U,S, l)
From these we conclude that sat(f ) ≤p set-cover(U,S, l)

And many others
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