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Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with
‘clever’ legal inputs] to solve any instance of problem A

Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

f = (x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . . . . ∧ (xm1 ∨ xm2 ∨ xm3)

We need to set each of x1, . . . , xn to 0/1 so as f = 1

Alternatively,

1 We need to pick a literal from each clause and set it to 1

2 But we cannot make conflicting settings
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)
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Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v31
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v21

v13

v11

v12

x1 = 1, x̄3 = 1, x̄4 = 1
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)
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x1 = 1, x3 = 1, x4 = 1
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Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 10 / 20



Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 11 / 20



Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 12 / 20



Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 13 / 20



Reduction by encoding with gadgets

3-sat(f ) ≤p independent-set(G , k)

Theorem: f is satisfiable iff G has an independent set of size m

The reduction is as follows:

Let A be an algorithm for the independent-set(G , k) problem

We will use A to solve the 3-sat(f ) problem

Given any instance f of 3-sat(f ) on n variables and m clauses

Construct the graph as outlined above

Call A on [G ,m]

if A returns Yes, declare f satisfiable and vice-versa

G can be constructed in time polynomial in n and m

Hence, this is a polynomial time reduction
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Reduction by encoding with gadgets

sat(f ) ≤p 3-sat(f ′)

Given a cnf formula f on variables X = {x1, . . . , xn}, D: new variables

Construct an equivalent 3-cnf formula f ′ on variables X ∪ {d1, d2, . . .}
Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′

The new (long clause) is shorter than C

(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

)

Suppose (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If xi1 ∨ xi2 = 1. Set di = 0 ▷ RHS is also satisfiable

If xi1 ∨ xi2 = 0, then y = 1. Set di = 1 ▷ RHS is also satisfiable
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Reduction by encoding with gadgets

sat(f ) ≤p 3-sat(f ′)

Given a cnf formula f on variables X = {x1, . . . , xn}, D: new variables

Construct an equivalent 3-cnf formula f ′ on variables X ∪ {d1, d2, . . .}
Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′

The new (long clause) is shorter than C

(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

)

Suppose (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If di = 1, then di = 0 and y = 1 ▷ LHS is also satisfiable

If di = 0, then di = 1 and xi1 ∨ xi2 = 1 ▷ LHS is also satisfiable
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Reduction by encoding with gadgets

ham-path(G ) ≤p ham-cycle(G )

Let A be an algorithm for ham-cycle(G )

Given an instance G of ham-path(G )

Let G ′ be G plus a dummy vertex v ′ adjacent to all vertices in V (G )

G ′ has a Hamiltonian cycle if and only if G has a Hamiltonian path

Call A on G ′

If A outputs Yes we will output Yes and vice-versa

vi = v′
vi+1

vi−1G
v′

G′
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Polynomial Time Reduction: Cook Reducibility

ham-cycle(G ) ≤p ham-path(G )

Let A be an algorithm for ham-path(G )

Given an instance G = (V ,E ) of ham-cycle(G )

For each edge e = (u, v) ∈ E (G ) make the graph Ge = (Ve ,Ee)

Ve = V ∪ {u′, v ′} and Ee = E ∪ {(u, u′), (v , v ′)}

G

u′

Guv

v′

u

v

x

G

x′

Gvx

v′

u

v

x

G Gab
u

v

x

a

b

a′

b′

G has a Hamiltonian cycle if and only if some Ge has a Hamiltonian path

Call A on each of Guv ▷ O(|E |) calls
If A outputs Yes on any Ge , we will output Yes

If A outputs No on all Ge , we will output No
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