
Theory of Computation

Polynomial Time Reduction

Polynomial Time Reduction Definition

Reduction by Equivalence

Reduction from Special Cases to General Case

Reduction by Encoding with Gadgets

Transitivity of Reductions

Decision, Search and Optimization Problem

Self-Reducibility

Imdad ullah Khan

Imdad ullah Khan (LUMS) Polynomial Time Reduction 1 / 20

Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with
‘clever’ legal inputs] to solve any instance of problem A

Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 2 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

f = (x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ ∧ (xm1 ∨ xm2 ∨ xm3)

We need to set each of x1, . . . , xn to 0/1 so as f = 1

Alternatively,

1 We need to pick a literal from each clause and set it to 1

2 But we cannot make conflicting settings

Imdad ullah Khan (LUMS) Polynomial Time Reduction 3 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

v11

v12

v13

. . .

vj3

vj2

vj1

vi3

vi2

vi1

. . .

vm1

vm2

vm3

. . .

Imdad ullah Khan (LUMS) Polynomial Time Reduction 4 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

v11

v12

v13

. . .

vj3

vj2

vj1

vi3

vi2

vi1

. . .

vm1

vm2

vm3

. . .

Imdad ullah Khan (LUMS) Polynomial Time Reduction 5 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

v11

v12

v13

. . .

vj3

vj2

vj1

vi3

vi2

vi1

. . .

vm1

vm2

vm3

. . .

xi3 = xj3

Imdad ullah Khan (LUMS) Polynomial Time Reduction 6 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For clauses with 2 and 1 literal make an edge or a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v31

v32

v33v23

v22

v21

v13

v11

v12

x1 = 1, x̄3 = 1, x̄4 = 1
Imdad ullah Khan (LUMS) Polynomial Time Reduction 7 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v31

v32

v33v23

v22

v21

v13

v11

v12

x1 = 1, x̄3 = 1, x̄4 = 1

Imdad ullah Khan (LUMS) Polynomial Time Reduction 8 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v13

v11

v12

v31

v32

v33v23

v22

v21

x1 = 1, x3 = 1, x4 = 1

Imdad ullah Khan (LUMS) Polynomial Time Reduction 9 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 10 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 11 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 12 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Given f on n variables and m clauses - Make a graph G

For each clause make a triangle with nodes labeled with literals

For smaller clauses make an edge or just a node

Make edges between literals appearing in different clauses as complements

Theorem: f is satisfiable iff G has an independent set of size m

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Imdad ullah Khan (LUMS) Polynomial Time Reduction 13 / 20

Reduction by encoding with gadgets

3-sat(f) ≤p independent-set(G , k)

Theorem: f is satisfiable iff G has an independent set of size m

The reduction is as follows:

Let A be an algorithm for the independent-set(G , k) problem

We will use A to solve the 3-sat(f) problem

Given any instance f of 3-sat(f) on n variables and m clauses

Construct the graph as outlined above

Call A on [G ,m]

if A returns Yes, declare f satisfiable and vice-versa

G can be constructed in time polynomial in n and m

Hence, this is a polynomial time reduction

Imdad ullah Khan (LUMS) Polynomial Time Reduction 14 / 20

Reduction by encoding with gadgets

sat(f) ≤p 3-sat(f ′)

Given a cnf formula f on variables X = {x1, . . . , xn}, D: new variables

Construct an equivalent 3-cnf formula f ′ on variables X ∪ {d1, d2, . . .}
Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′

The new (long clause) is shorter than C

(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

)

Suppose (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If xi1 ∨ xi2 = 1. Set di = 0 ▷ RHS is also satisfiable

If xi1 ∨ xi2 = 0, then y = 1. Set di = 1 ▷ RHS is also satisfiable

Imdad ullah Khan (LUMS) Polynomial Time Reduction 15 / 20

Reduction by encoding with gadgets

sat(f) ≤p 3-sat(f ′)

Given a cnf formula f on variables X = {x1, . . . , xn}, D: new variables

Construct an equivalent 3-cnf formula f ′ on variables X ∪ {d1, d2, . . .}
Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′

The new (long clause) is shorter than C

(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

)

Suppose (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If di = 1, then di = 0 and y = 1 ▷ LHS is also satisfiable

If di = 0, then di = 1 and xi1 ∨ xi2 = 1 ▷ LHS is also satisfiable

Imdad ullah Khan (LUMS) Polynomial Time Reduction 16 / 20

Reduction by encoding with gadgets

ham-path(G) ≤p ham-cycle(G)

Let A be an algorithm for ham-cycle(G)

Given an instance G of ham-path(G)

Let G ′ be G plus a dummy vertex v ′ adjacent to all vertices in V (G)

G ′ has a Hamiltonian cycle if and only if G has a Hamiltonian path

Call A on G ′

If A outputs Yes we will output Yes and vice-versa

vi = v′
vi+1

vi−1G
v′

G′

Imdad ullah Khan (LUMS) Polynomial Time Reduction 17 / 20

Reduction by encoding with gadgets

ham-path(G) ≤p ham-cycle(G)

Let A be an algorithm for ham-cycle(G)

Given an instance G of ham-path(G)

Let G ′ be G plus a dummy vertex v ′ adjacent to all vertices in V (G)

G ′ has a Hamiltonian cycle if and only if G has a Hamiltonian path

Call A on G ′

If A outputs Yes we will output Yes and vice-versa

vi = v′
vi+1

vi−1G
v′

G′

Imdad ullah Khan (LUMS) Polynomial Time Reduction 18 / 20

Reduction by encoding with gadgets

ham-path(G) ≤p ham-cycle(G)

Let A be an algorithm for ham-cycle(G)

Given an instance G of ham-path(G)

Let G ′ be G plus a dummy vertex v ′ adjacent to all vertices in V (G)

G ′ has a Hamiltonian cycle if and only if G has a Hamiltonian path

Call A on G ′

If A outputs Yes we will output Yes and vice-versa

vi = v′
vi+1

vi−1G
v′

G′

Imdad ullah Khan (LUMS) Polynomial Time Reduction 19 / 20

Polynomial Time Reduction: Cook Reducibility

ham-cycle(G) ≤p ham-path(G)

Let A be an algorithm for ham-path(G)

Given an instance G = (V ,E) of ham-cycle(G)

For each edge e = (u, v) ∈ E (G) make the graph Ge = (Ve ,Ee)

Ve = V ∪ {u′, v ′} and Ee = E ∪ {(u, u′), (v , v ′)}

G

u′

Guv

v′

u

v

x

G

x′

Gvx

v′

u

v

x

G Gab
u

v

x

a

b

a′

b′

G has a Hamiltonian cycle if and only if some Ge has a Hamiltonian path

Call A on each of Guv ▷ O(|E |) calls
If A outputs Yes on any Ge , we will output Yes

If A outputs No on all Ge , we will output No

Imdad ullah Khan (LUMS) Polynomial Time Reduction 20 / 20

