Polynomial Time Reduction

- Polynomial Time Reduction Definition
- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions
- Decision, Search and Optimization Problem
- Self-Reducibility

Imdad ullah Khan

Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with *'clever'* legal inputs] to solve any instance of problem A

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Theorem

G has an independent set of size k iff \overline{G} has a clique of size k

Recall the complement of a graph G = (V, E) is the graph $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : (u, v) \notin E\}$

IMDAD ULLAH KHAN (LUMS)

Theorem

G has an independent set of size k iff \overline{G} has a clique of size k

Recall that for G = (V, E) its complement is a graph $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : (u, v) \notin E\}$

An independent set of size 3

The same 3 vertices make a clique in \overline{G}

Reduction by (Complementary) Equivalence

Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

 $CLIQUE(G, k) \leq_{p} IND-SET(G, k)$

- Let \mathcal{A} be an algorithm solving IND-SET(G, k) for any G and $k \in \mathbb{Z}$
- Let [G, k] be an instance of the CLIQUE problem
- Compute the complement \overline{G} of G
- Call \mathcal{A} on $[\overline{G}, k]$
- If it outputs **Yes**, output **Yes** for the problem CLIQUE(G, k)
- Else output No

Algorithm ${\mathcal B}$ solves ${\rm CLIQUE}({\rm G}, \kappa)$ problem using a solution ${\mathcal A}$ for independent-set problem

 \triangleright Polytime

Theorem

G has an independent set of size *k* iff \overline{G} has a clique of size *k*

- Given this complementary equivalence should we study both problems?
- Both are "hard" problems
- In practice an approximation algorithm is used for real world graphs
- Most real world graphs are very sparse
- Hence, their complements are very dense
- So applying the same algorithm on the complement will not be as efficient

Reduction by (Complementary) Equivalence

Theorem: $S \subset V$ is an independent in G S iff $V \setminus S$ is a vertex cover in G

• Let S be an independent set we show that $\overline{S} = V \setminus S$ is a vertex cover

- For any edge (u, v), either $u \notin S$ or $v \notin S \implies$ either $u \in \overline{S}$ or $v \in \overline{S}$
- Hence \overline{S} is a vertex cover

• Let C be a vertex cover we show that \overline{C} is an independent set

- For any edge (u, v) it cannot be that $u \notin C$ and $v \notin C$
- It cannot be that $u \in \overline{C}$ and $v \in \overline{C}$
- Hence \overline{C} is an independent set

Reduction by (Complementary) Equivalence

$\operatorname{IND-SET}(G, k) \leq_{p} \operatorname{VERTEX-COVER}(G, k')$

- Let $\mathcal A$ be an algorithm solving VERTEX-COVER(G,k) for any $G,\,k\in\mathbb Z$
- Let [G, t] be an instance of the IND-SET problem
- Call \mathcal{A} on [G, n-t]
- If it outputs **Yes**, output **Yes** for IND-SET(*G*, *t*)
- Else output No

Algorithm \mathcal{B} solves INDEPENDENT-SET(G,K) problem using solution, \mathcal{A} for VERTEX-COVER problem