
Theory of Computation

Polynomial Time Reduction

Polynomial Time Reduction Definition

Reduction by Equivalence

Reduction from Special Cases to General Case

Reduction by Encoding with Gadgets

Transitivity of Reductions

Decision, Search and Optimization Problem

Self-Reducibility

Imdad ullah Khan

Imdad ullah Khan (LUMS) Polynomial Time Reduction 1 / 8



Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with
‘clever’ legal inputs] to solve any instance of problem A

Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 2 / 8



Reduction by (Complementary) Equivalence

Theorem

G has an independent set of size k iff G has a clique of size k

Recall the complement of a graph G = (V ,E ) is the graph

G = (V ,E ), where E =
{
(u, v) : (u, v) /∈ E

}

A graph G G

Imdad ullah Khan (LUMS) Polynomial Time Reduction 3 / 8



Reduction by (Complementary) Equivalence

Theorem

G has an independent set of size k iff G has a clique of size k

Recall that for G = (V ,E ) its complement is a graph

G = (V ,E ), where E = {(u, v) : (u, v) /∈ E}

An independent set of size 3 The same 3 vertices make a clique in G

Imdad ullah Khan (LUMS) Polynomial Time Reduction 4 / 8



Reduction by (Complementary) Equivalence

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

clique(G , k) ≤p ind-set(G , k)

Let A be an algorithm solving ind-set(G , k) for any G and k ∈ Z
Let [G , k] be an instance of the clique problem

Compute the complement G of G ▷ Polytime

Call A on [G , k]

If it outputs Yes, output Yes for the problem clique(G , k)

Else output No

A
[G, k] B(G, k)[G, k] A(G, k)

Algorithm B solves clique(G,k) problem using a solution A for independent-set problem

Complement G Check output

Algorithm B takes an instance [G, k] of clique returns Yes if G has a clique of size k else returns No

Imdad ullah Khan (LUMS) Polynomial Time Reduction 5 / 8



Why Study both clique or independent-set?

Theorem

G has an independent set of size k iff G has a clique of size k

Given this complementary equivalence should we study both problems?

Both are “hard” problems

In practice an approximation algorithm is used for real world graphs

Most real world graphs are very sparse

Hence, their complements are very dense

So applying the same algorithm on the complement will not be as efficient

Imdad ullah Khan (LUMS) Polynomial Time Reduction 6 / 8



Reduction by (Complementary) Equivalence

Theorem: S ⊂ V is an independent in G S iff V \S is a vertex cover in G

Let S be an independent set we show that S = V \ S is a vertex cover

For any edge (u, v), either u /∈ S or v /∈ S =⇒ either u ∈ S or v ∈ S

Hence S is a vertex cover

Let C be a vertex cover we show that C is an independent set

For any edge (u, v) it cannot be that u /∈ C and v /∈ C

It cannot be that u ∈ C and v ∈ C

Hence C is an independent set

Imdad ullah Khan (LUMS) Polynomial Time Reduction 7 / 8



Reduction by (Complementary) Equivalence

ind-set(G , k) ≤p vertex-cover(G , k ′)

Let A be an algorithm solving vertex-cover(G , k) for any G , k ∈ Z

Let [G , t] be an instance of the ind-set problem

Call A on [G , n − t]

If it outputs Yes, output Yes for ind-set(G , t)

Else output No

A
[G, k] B(G, k)[G, n− k] A(G, n− k)

Algorithm B solves Independent-Set(G,k) problem using solution, A for Vertex-Cover problem

nothing Check output

B takes an instance [G, k] of Independent-Set returns YES if G has an indep.set of size k else returns NO

Imdad ullah Khan (LUMS) Polynomial Time Reduction 8 / 8


