
Theory of Computation

Polynomial Time Reduction

Polynomial Time Reduction Definition

Reduction by Equivalence

Reduction from Special Cases to General Case

Reduction by Encoding with Gadgets

Transitivity of Reductions

Decision, Search and Optimization Problem

Self-Reducibility

Imdad ullah Khan

Imdad ullah Khan (LUMS) Polynomial Time Reduction 1 / 5



Efficiently Solvable and Hard (Intractable) Problems

Efficiently Solvable Problem

∃ an O(nk) worst case time algorithm for instances of size n, constant k

In complexity theory we study negative results

Characterize problems for which we don’t have good news

Cannot say they are not efficiently solvable (just don’t know yet)

We might need to focus on approximation or special cases

Hard (Intractable) Problems

No known O(nk) algorithm

Exponential time is sufficient O(nn),O(n!),O(kn)

We establish that these “hard problems” are in some sense are equivalent

Imdad ullah Khan (LUMS) Polynomial Time Reduction 2 / 5



Polynomial time reduction is a way to compare hardness of problems

To explore the class of computationally hard problems, we define a
notion of comparing the hardness of two problems

Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

B is at least as hard as problem A (w.r.t polynomial time)

Extremely important (a building block) for complexity theory

Generally confused, make sure you understand it the right way

Imdad ullah Khan (LUMS) Polynomial Time Reduction 3 / 5



Polynomial time reduction is a way to compare hardness of problems

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with
‘clever’ legal inputs] to solve any instance of problem A

Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Imdad ullah Khan (LUMS) Polynomial Time Reduction 4 / 5



Polynomial time reduction can be used to design
algorithms

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

findmin ≤p sorting

sorting ≤p findmin

median ≤p sorting

sorting ≤p median

cycle-detection ≤p dfs

all-pairs-phortest-paths ≤p single-source-shortest-paths

single-source-shortest-paths ≤p all-pairs-phortest-paths

bipartite-matching ≤p maximimum-flow

Complete details of these (toy) reductions-calls (with inputs), extra computation
Imdad ullah Khan (LUMS) Polynomial Time Reduction 5 / 5


