Theory of Computation

Complexity Theory

- Time Complexity
- Complexity Classes
- Time Hierarchy Theorem
- Polynomial Time P
- Nondeterministic TM

■ Nondeterministic Polynomial Time NP

- Polynomial Time Verification
- P vs NP Question
- The Classes EXP and Co-NP

Imdad ullah Khan

Computability: Is the problem solvable by a model (e.g. TM)?
Complexity: Is the problem solvable in $O(n)$ steps?

What can be computed with limited resources?

Computational resources required by different computation models can be

- Time (number of elementary/bit operations)
- Space (memory cells)
- Random bits (coin flips or calls to pseudorandom number generator by randomized algorithms)

■ Communication bandwidth (number of bits transmitted, number of messages exchanged)

■ Power or energy (number of KWH consumed, esp. important for battery constrained devices)

Computational Complexity Theory

Structural Complexity attempts to classify computational problems based on the amount of resources required by their solutions

Measuring Runtime of a TM

Runtime of a TM is the number of transitions as a function of input size \triangleright Input size: number of characters on tape

Let M be a TM that halts on all inputs
$\triangleright L(M)$ is decidable
Runtime of M is a function $T: \mathbb{N} \mapsto \mathbb{N}$
$T(n)$ is maximum number of transitions performed by M over all inputs of length n

We perform asymptotic analysis on these runtime functions

Measuring Runtime of a TM

Consider the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Algorithm Check if $w \in L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
1: if w is not of the form $0^{*} 1^{*}$ then
2: Reject
3: while both 0 's and 1 's remain on the tape do
4: Cross off the first 0 and the first 1 from the tape
5: if Only 0 's or only 1 's remain then
6: Reject
7: else
8: Accept

Measuring Runtime of a TM

Consider the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Algorithm Check if $w \in L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}, \quad|w|=n$
1: if w is not of the form $0^{*} 1^{*}$ then
$\triangleright O(n)$
2: Reject
3: while both 0 's and 1 's remain on the tape do
$\triangleright O(n)$
4: Cross off the first 0 and the first 1 from the tape
$\triangleright O(n)$
5: if Only 0 's or only 1 's remain then
$\triangleright O(n)$
6: Reject
7: else
8: Accept

$$
T(n)=O(n)+O(n \times n)+O(n)=O\left(n^{2}\right)
$$

Time-Bounded Complexity Classes

Structural Complexity attempts to classify computational problems based on the amount of resources required by their solutions

$\operatorname{TIME}(t(n))$

$\operatorname{TIME}(t(n))=\left\{L^{\prime}: \exists\right.$ a TM M with runtime $O(t(n))$ and $\left.L(M)=L^{\prime}\right\}$
$\operatorname{TIME}(t(n))$ is the class of problems decided by a TM in $O(t(n))$ runtime
We just showed that $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$

Recall that if $f(n)=O(n)$, then $f(n)=O\left(n^{2}\right), f(n)=O\left(n^{3}\right)$ and so on

We generally want to place problems in the "smallest" class
\triangleright i.e. we want tight upper bounds

Time-Bounded Complexity Classes

$L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$ is not the best result

Algorithm Check if $w \in L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
if w is not of the form $0^{*} 1^{*}$ then
Reject
while both 0 's and 1 's remain on the tape do
if Number of 0 's and number of 1 's have different parity then Reject
Cross off every other 0 and every other 1 from the tape
if Only 0 's or only 1 's remain then
Reject
else
Accept
x 0 x 0 x 0 x 0 x 0 x 0 xx 1 x 1 x 1 x 1 x 1 x 1 x XXXXXXXXXXXXXXXXXXXXXXXXXX

Time-Bounded Complexity Classes

$L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \in \operatorname{TIME}\left(n^{2}\right)$ is not the best result
Algorithm Check if $w \in L=\left\{0^{k} 1^{k} \mid k \geq 0\right\} \quad|w|=n$
if w is not of the form $0^{*} 1^{*}$ then $\quad \triangleright O(n)$

Reject

while both 0 's and 1 's remain on the tape do
$\triangleright O(\log n)$
if Number of 0 's and number of 1 's have different parity then Reject
Cross off every other 0 and every other 1 from the tape
if Only 0 's or only 1 's remain then Reject
else
Accept

Runtime of this TM is $O(n \log n)$

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A basic TM M_{2} can simulate any multitape TM M_{1}

■ M_{2} stores content of all k tapes in its single tape with \# as separator \triangleright Assuming \# is not used by M_{1}

- For each symbol σ (of M_{1}) M_{2} also uses it special version $\hat{\sigma}$. For each section of the tape $\hat{\sigma}$ indicates location of the corresponding head

Multitape TM $=$ Basic TM

A basic TM M_{2} can simulate any multitape TM M_{1}

- M_{2} stores content of all k tapes in its single tape with \# as separator \triangleright Assuming \# is not used by M_{1}
■ For each symbol σ (of M_{1}) M_{2} also uses it special version $\hat{\sigma}$. For each section of the tape $\hat{\sigma}$ indicates location of the corresponding head

■ On input $w_{1}=w_{11} \ldots w_{1 \ell}, w_{2}=w_{21} \ldots w_{2 m}, w_{3}=w_{31} \ldots w_{3 n}$ to M_{1}

- M_{2} 's tape is $\# \hat{w_{11}} \ldots w_{1 \ell} \# \hat{w_{21}} \ldots w_{2 m} \# \hat{w_{31}} \ldots w_{3 m} \# \sqcup$
- To simulate a transition of M_{1}, M_{2} move its head from first \# to $(k+1)$ st \# to find current symbols ($\hat{\sigma} /$ virtual heads)
■ M_{2} then make the transition as dictated by transition of M_{2} (writing new symbols and moving all virtual heads)
- If a "head" needs to be moved beyond the $\#, M_{2}$ first shift all tape content one step to right and continue

Multitape TM can be more efficient
Theorem: A basic TM cannot decide $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ in $o(n \log n)$ time
Multitape TM's are not more powerful than basic TM (for computability)
Multitape TMs are easier to construct/describe and also efficient
We design a 2-tape TM to decide $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
1 Suppose $w \in\{0,1\}^{*}$ is given on tape 1
2 Scan tape 1 left-to-right to check if $w \in 0^{*} 1^{*}$
3 Copy all 1's in w from tape 1 to tape 2
4 Scan both tapes left-to-right to see if every 0 on tape 1 has a corresponding 1 on tape 2 and vice-versa, if not reject
5 Accept if heads on both tapes read \sqcup
$L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$ can be decided in $O(n)$ time by a two-tape TM

Multitape TM can be more efficient

Multitape TMs are easier to construct/describe and also efficient How efficient can multitape TMs be compared to basic TMs?

Theorem: For $B=\left\{w w \mid w \in 0,1^{*}\right\}$ the gap is quadratic

Theorem: Let $t: \mathbb{N} \mapsto \mathbb{N}$ satisfy $t(n) \geq n$, for all n. Then every $t(n)$ time multi-tape TM M_{k}, has an equivalent $O\left(t(n)^{2}\right)$ time one-tape TM M_{1}

The total length of all tapes of M_{k} is $\leq t(n)$. To simulate one transition of M_{k}, M_{1} performs at most $O(t(n))$ steps.

Thus, total runtime of M_{1} is $O(t(n))^{2}$
Suppose language A can be decided by a multi-tape TM in $p(n)$ steps, for some polynomial p. Then A can be decided by a one-tape TM in $q(n)$ steps, for some polynomial $q(n)$

Universal Turing Machine

Universal Turing Machine

There is a Turing machine U that takes as input an encoding of an arbitrary Turing machine M over Σ and a string $w \in \Sigma^{*}$ such that U accepts $\langle M, w\rangle$ if and only if M accepts w

The Universal TM with a clock

Theorem

There is a (one-tape) Turing machine U which takes as input:

- the encoding of an arbitrary TM, M
- an input string w

■ and a string of t 's with $t>|w|$
such that
$1 U\left(\langle M\rangle, w, 1^{t}\right)$ halts in $O\left(|M|^{2} t^{2}\right)$ steps and
$2 U$ accepts $\left(\langle M\rangle, w, 1^{t}\right) \Longleftrightarrow M$ accepts w in t steps
Proof Sketch: Make a multi-tape TM M^{\prime} that takes $\left(\langle M\rangle, w, 1^{t}\right)$ and simulate M on w
M^{\prime} simulates each step of M in at most $O(t)$ steps
Total runtime of M^{\prime} is $O(t|M|)$
Simulate M^{\prime} by a one-tape TM, U with at most quadratic time blow-up

The Time Hierarchy Theorem

Theorem

For all "reasonable" $f, g: \mathbb{N} \mapsto \mathbb{N}$ and for all n,

$$
f(n) \log f(n)=o(g(n)) \Longrightarrow \operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}(g(n))
$$

\triangleright i.e. with substantial more time, we can solve strictly more problems, as there are languages that can be decided in $O(g(n))$ but not $O(f(n))$

Reasonable means time-constructible $f(n)$ is time-constructible, if \exists a TM, M_{f} such that $\forall n, \exists x,|x|=n$ and $M_{f}(x)$ halts in exactly $f(n)$ steps.
\triangleright i.e. $\exists M_{f}$, that on input of size n can output $f(n)$ in time $O(f(n))$
Common functions $n^{i}, n_{i}(\log n)^{j}, 2^{n^{i}}, 2^{(\log)^{i}}$ etc. are time-constructible Why the time-constructible condition? We simulate TM's for a certain time. If a TM runtime is $f(n)$, but the $f(n)$ cannot be computed in time $O(f(n))$, then simulating the TM in $O(f(n))$ time is problematic

The Time Hierarchy Theorem

Theorem

For all "reasonable" $f, g: \mathbb{N} \mapsto \mathbb{N}$ and for all n,

$$
f(n) \log f(n)=o(g(n)) \quad \Longrightarrow \quad \operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}(g(n))
$$

\triangleright i.e. with substantial more time, we can solve strictly more problems, as there are languages that can be decided in $O(g(n))$ but not $O(f(n))$

To illustrate the ideas, we prove a simpler statement

$\operatorname{Time}(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$

so we only prove the theorem for the example $f(n)=n$ and $g(n)=n^{2}$
\triangleright Note that $n \log n=o\left(n^{2}\right)$
We construct a TM D with runtime $O\left(n^{2}\right)$ whose language $L(D)$ is not accepted by any n time TM, i.e. $L(D) \in \operatorname{TIME}\left(n^{2}\right)$ but $L(D) \notin \operatorname{TIME}(n)$

The Time Hierarchy Theorem

Time $(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$

We construct a TM D with runtime $O\left(n^{2}\right)$ whose language $L(D)$ is not accepted by any n time TM, i.e. $L(D) \in \operatorname{TIME}\left(n^{2}\right)$ but $L(D) \notin \operatorname{TIME}(n)$ Define a TM D that takes input encoding of a TM M as follows:

Compute $n=|\langle M\rangle|$ (length of $\langle M\rangle$)
Simulate M on $\langle M\rangle$ for $n^{1.9}$ steps and
$D(\langle M\rangle)$:

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { rejects }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle \\ \text { accept } & \text { if } M \text { does not halt (yet) on }\langle M\rangle\end{cases}
$$

The Time Hierarchy Theorem

Time $(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$
Compute $n=|\langle M\rangle|$ (length of $\langle M\rangle$)
Simulate M on $\langle M\rangle$ for $n^{1.9}$ steps and

$D(\langle M\rangle):$| accept | if M rejects $\langle M\rangle$ |
| :--- | :--- |
| reject | if M accepts $\langle M\rangle$ |
| accept | if M does not halt (yet) on $\langle M\rangle$ |

Lemma 1: $L(D) \in \operatorname{TIME}\left(n^{2}\right)$
Proof: D simulate M for $n^{1.9}$ steps. Maintaining a step a counter and other overhead requires $n^{1.9} \log n$ steps. Thus, $L(D) \in \operatorname{TIME}\left(n^{2}\right)$.

The Time Hierarchy Theorem

Time $(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$

Compute $n=|\langle M\rangle|$ (length of $\langle M\rangle$)
Simulate M on $\langle M\rangle$ for $n^{1.9}$ steps and
$D(\langle M\rangle)$:

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { rejects }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle \\ \text { accept } & \text { if } M \text { does not halt (yet) on }\langle M\rangle\end{cases}
$$

Lemma 1: $L(D) \notin \operatorname{TIME}(n)$
Proof: Suppose $L(D) \in \operatorname{TIME}(n)$, i.e. \exists a TM R, with runtime $O(n)$ and $L(D)=L(R)$
What is $D(\langle R\rangle)$? D accepts $\langle R\rangle$ if R rejects or loops on $\langle R\rangle$
$\Longrightarrow L(D) \neq L(R)$

The Time Hierarchy Theorem

Time $(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$

$$
\text { Compute } n=|\langle M\rangle| \text { (length of }\langle M\rangle \text {) }
$$

Simulate M on $\langle M\rangle$ for $n^{1.9}$ steps and
$D(\langle M\rangle)$:

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { rejects }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle \\ \text { accept } & \text { if } M \text { does not halt (yet) on }\langle M\rangle\end{cases}
$$

Theorem: $L(D) \in \operatorname{TIME}\left(n^{2}\right) \backslash \operatorname{TIME}(n) \Longrightarrow \operatorname{Time}(n) \subsetneq \operatorname{Time}\left(n^{2}\right)$
Technicalities: D can compute $n^{1.9}$, because $f(n)$ is constructible Need $n^{1.9}>O(n \log n), n=|\langle R\rangle| \geq n_{0}$ so asymptotic behavior kicks off $n^{1.9}$ can be replaced with any function in $\omega(n \log n)$ and $o\left(n^{2} \log n\right)$ Proof of the general theorem follows exactly the same line

The Time Hierarchy Theorem

Theorem

For all "time-constructible" $f, g: \mathbb{N} \mapsto \mathbb{N}$ and for all n,

$$
f(n) \log f(n)=o(g(n)) \quad \Longrightarrow \quad \operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}(g(n))
$$

\triangleright i.e. with substantial more time, we can solve strictly more problems, as there are languages that can be decided in $O(g(n))$ but not $O(f(n))$

Corollary: $\quad \operatorname{TIME}(n) \subsetneq \operatorname{TIME}\left(n^{2}\right) \subsetneq \operatorname{TIME}\left(n^{3}\right) \subsetneq \operatorname{TIME}\left(n^{4}\right)$

Are there important everyday problems that are high up in this time hierarchy?

Is there a natural problem that needs n^{40} time?

Polynomial Time

$$
P=\bigcup_{k \in \mathbb{N}} \operatorname{TIME}\left(n^{k}\right)
$$

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms \subseteq Polynmial-Time TM

More generally: TM can simulate every "reasonable" model of computation with only polynomial increase in time

NonDeterministic Turing Machine

A NonDeterministic Turing machine makes nondeterministic choices

head

INFINITE REWRITABLE TAPE

$$
\delta: Q \times \Gamma \mapsto \mathcal{P}(Q \times \Gamma \times\{L, R\})
$$

NonDeterministic Turing Machine

For an NTM a computation is a tree of configurations reachable from the root (starting configuration $q w \sqcup$).
\triangleright For TM a computation is a sequence (path) of configurations

NonDeterministic Turing Machine

An NTM accepts a string w iff some computation path ends in an accepting configuration
i.e. if there is at least one sequence of configurations from the starting configuration to an accepting configuration

Nondeterminism

Are NFA(NTM) and DFA(TM) equal in computational power?
Ways to think about non-determinism
Parallel computation (with certain restriction) and accepting when one of the node succeeds

Or tree of all possible walks from a start state branching according to symbols on edges and accepting if any leaf node is a final state

Or computing with guessing capability to choose the next state (at certain states) and verifying the right choice

Does verified guessing of NFA (NTM) increases its power over DFA (TM)?

Time-Bounded Complexity Classes

NTIME ($t(n)$)

$\operatorname{NTIME}(t(n))=\left\{L^{\prime}: \exists\right.$ NTM N, with runtime $O(t(n))$ and $\left.L(N)=L^{\prime}\right\}$
i.e. $\operatorname{NTIME}(t(n))$ is the class of problems decided by a NTM with $O(t(n))$ runtime
$\operatorname{TIME}(t(n)) \subseteq \operatorname{NTIME}(t(n))$ (because every TM is a NTM)

Nondeterministic Polynomial Time

$$
N P=\bigcup_{k \in \mathbb{N}} \operatorname{NTIME}\left(n^{k}\right)
$$

Nondeterministic Time Hierarchy Theorem

Theorem

For all "reasonable" $f, g: \mathbb{N} \mapsto \mathbb{N}$ and for all n, for all $n, f(n) \log f(n)=o(g(n)) \Longrightarrow \operatorname{NTIME}(f(n)) \subsetneq \operatorname{NTIME}(g(n))$

The technique for time hierarchy theorem does not directly work.
A NTM running in $O(n)$ time may have $2^{O(n)}$ computation branches. How to determine in $O\left(n^{2}\right)$ time whether or not it accepts and then flip this answer.

Uses a technique called lazy diagonalization

3 -SAT $=\{f: f$ is a satisfiable 3-cnf formula $\}$

$$
3 \text {-SAT } \in \operatorname{NTIME}\left(n^{c}\right) \text { for constant } c>1
$$

Proof Sketch: Suppose f is input in some natural format and f has n variables and m clauses

1 Check if f is a valid 3-cnf formula
2 Set each variable x_{i} nondeterministically to 0 or 1
3 Evaluate f with the chosen assignment and Accept if f is true

$\underline{\operatorname{IND}-\operatorname{SET}(G, k) \in N P}$

$\operatorname{IND-SET}(G, k)=\{G: G$ has an independent set of size $k\}$

$$
\operatorname{IND-SET}(G, k) \in N T I M E\left(n^{c}\right) \text { for constant } c>1
$$

Proof Sketch: Suppose $G=(V, E),|V|=n$ is input in some natural format (e.g. adjacency matrix)

1 Nondeterministically choose a subset $S \subset V$ of size k
2 Verify if S is an independent set, then Accept
$\operatorname{HAM}-\operatorname{CyCle}(G)=\{G: G$ is Hamiltonian $\}$

$$
\operatorname{HAM}-\operatorname{CYCLE}(G) \in \operatorname{NTIME}\left(n^{c}\right) \text { for constant } c>1
$$

Proof Sketch: Suppose $G=(V, E)$ is input in some natural format (e.g. adjacency matrix)

1 Nondeterministically guess a cyclic permutation of V
2 Verify if the permutation is a Hamiltonian cycle

Polynomial Time Verification

Need to formalize "checking a solution easily" independent of computation

A decision problem X is efficiently verifiable if
1 The claim: " \mathcal{I} is a Yes instance of X " can be made in polynomial bits

- There exists a polynomial sized certificate for Yes instances of X

2 A certificate can be verified in polynomial time

- There exists a polynomial time algorithm \mathcal{V} that takes the instance \mathcal{I} and the certificate \mathcal{C} such that $\mathcal{V}(\mathcal{I}, \mathcal{C})=$ Yes iff $X(\mathcal{I})=$ Yes

Polynomial Time Verification

Computing solution to a problem vs checking a proposed solution

- Sometimes computing and verifying a solution are both "easy"
- e.g. we can compute a MST of a graph and verify whether a claimed solution is indeed a MST in polynomial time
- Sometimes computing is not easy (yet) but verifying is easy
- e.g. 3 -SAT (f) we don't know how to find a satisfying solution (or decide if one exists)
- But verifying a claimed solution can be done in one scan of f
- Sometimes both computing and verifying a "claim" are not easy

■ e.g. not even clear how to "make" the claim that " G has no Hamiltonian cycle"?

Polynomial Time Verification

The $\operatorname{MST}(G, k)$ problem: Is there a spanning tree of G of weight $\leq k$?

$\operatorname{MST}(G, k)$ is polynomial time verifiable

- A certificate could be the "claimed spanning tree" T for G
- T can be written by writing vertices ids in some order $\triangleright O(n \log n)$ bits
- Adjacency matrix of edges in $T \quad \triangleright O\left(n^{2}\right)$ bits
- A verifier can check
- if vertices of T are in G
- If all edges in T are actually from G
- If sum of weights of edges is k
- Alternatively, a certificate could be an empty string
- A verifier can run Kruskals's algorithm to find a MST T of G
- If $w(T) \leq k$, it verifies the claim otherwise rejects the claim

Polynomial Time Verification

3 -SAT (f) is polynomial time verifiable

- A certificate would be the assignment of 0 and 1 's to all variables
- A verifier can evaluate f with the assignment and if the value of f is 1 it outputs Yes (=verified) otherwise No (=not verified)

Note that we do not have to design a verifier or a technique for certifying, we only need to prove their existence

- Verifier does not have to be unique
- There can be many ways to certify
\triangleright e.g. an independent set can be certified as the set of vertices, set of edges, complements thereof
- Verifier does not have to read the certificate, recall the requirement $\mathcal{V}(\mathcal{I}, \mathcal{C})=$ Yes iff $X(\mathcal{I})=$ Yes

Polynomial Time Verification

CLIqUE (G, k) is polynomial time verifiable

Given an instance $[G, k]$ of $\operatorname{CLique}(G, k)$

What could be a certificate of claim " $[G, k]$ is Yes instance of CLIQUE (\cdot, \cdot) " ?
\triangleright What evidence prove that G has a clique of size k ?
Is the certificate of polynomial length?

How can we verify that indeed $[G, k]$ is a Yes instance of $\operatorname{Clique}(G, k)$
\triangleright Does the verifier need to read the certificate?
Is the verifier a polynomial time algorithm?

Polynomial Time Verification

$\operatorname{PRIME}(n)$ and COMPOSITE (n) are polynomial time verifiable
\triangleright Note that they are complement of each other

- A certificate for the $\operatorname{Composite}(n)$ problem can be a factor d
- A verifier can just confirm that $1<d<n$ and $d \mid n$

Theorem (AKS(2004))

There exists a polynomial time algorithm to check whether an integer is prime

- A certificate for $\operatorname{PRIME}(n)$ can be an empty string
- A verifier exists by the above theorem, using that if n is prime we verify the claim if n is not a prime we reject the claim

Polynomial Time Verification

$\operatorname{VERTEX}-\operatorname{Cover}(G, k)$ is polynomial time verifiable

■ What could be a certificate of claim " G has a vertex cover of size k "?
■ How can we verify that indeed " G has a vertex cover of size k ?

HAmiltonian (G) is polynomial time verifiable

■ What could be a certificate of claim "G has a Hamiltonian cycle?"
■ How can we verify that indeed G has a Hamiltonian cycle?

Polynomial Time Verification

Are all problems "efficiently" verifiable?
It decides whether the given formula f is not satisfiable $\overline{3-\mathrm{SAT}}(f)$
\triangleright sometime referred to as $\operatorname{UNSAT}(f)$

Suppose one wants to claim that the formula f is not satisfiable
\triangleright Meaning this f is a Yes instance of $\overline{3-\mathrm{SAT}}(f)$
How can one make a polynomial sized certificate to make the claim?
$\triangleright{ }^{\prime}[0,1,1,0, \ldots 1]$ does not satisfy f ", does not mean f is not satisfiable

The Class P of Problems

The Class P: Decision problems that can be solved in polynomial time

- There exists an algorithm that correctly outputs Yes/No on any instance
- Recall: polynomial time is a good notion of "reasonable/efficient time"
- Mainly because polynomials are closed under composition (reduction)
- In practice degrees of polynomials are small
(Appropriately defined decision versions of) all these problems are in P
- $\operatorname{MST}(G, k)$
- Shortest-Path (G, s, t, k)
- PRIME(n)
- Bipartite-vertex-Cover (G, k)
- MAX-FLow (G, t)

The Class NP of Problems

The Class NP: Decision problems that can be verified in polynomial time

A problem X is efficiently verifiable if

- The claim: " I is a Yes instance of X " can be made in polynomial bits
- There exists a polynomial sized certificate for Yes instances of X
- A certificate can be verified in polynomial time
- There exists a polynomial time algorithm \mathcal{V} that takes the instance \mathcal{I} and the certificate \mathcal{C} such that $\mathcal{V}(\mathcal{I}, \mathcal{C})=$ Yes iff $X(\mathcal{I})=$ Yes

NP stands for "Non-deterministic Polynomial Time"

- 3 -SAT (f)
- hamiltonian-Cycle (G)
- Knapsack (U, w, v, C)
- INDEPENDENT-SET(G, k)

Polynomial Time Verification

Theorem

$L \in N P \Longleftrightarrow$ there is a constant k and polynomial-time TM V such that $L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{c}\right.\right.$ and $V(x, y)$ accepts $\left.]\right\}$

NP = set of languages L if and only if there is a polynomial-length proofs (aka. certificates or witnesses) for membership in L

Problems with the property that, once you have the solution, it is "easy" to verify the solution

Polynomial Time Verification

Theorem

$L \in N P \Longleftrightarrow$ there is a constant k and polynomial-time TM V such that $L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{c}\right.\right.$ and $V(x, y)$ accepts $\left.]\right\}$

Proof :

$L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{c}\right.\right.$ and $V(x, y)$ accepts $\left.]\right\} \Longrightarrow L \in N P$
Define NTM $N(x)$: Guess y of length at most $|x|^{c}$, Output $V(x, y)$
$L \in N P \Longrightarrow L=\left\{x \mid \exists y \in \Sigma^{*}\left[|y| \leq|x|^{c}\right.\right.$ and $V(x, y)$ accepts $\left.]\right\}$
Suppose N is a poly-time NTM that decides L.
Define $V(x, y)$ to accept iff y encodes an accepting computation history of N on x

$\mathrm{P} \subseteq \mathrm{NP}$

$P \subseteq N P$

- Let $X \in \mathrm{P}$
- By definition, there exists a polynomial time algorithm \mathcal{A} which decides X
- We need to argue existence of a poly time verifier for X and poly sized certificate for Yes instances of X
- The certificate could be an empty string
- Given an instance \mathcal{I} of X and a certificate \mathcal{C} to witness that $X(\mathcal{I})=$ Yes
- \mathcal{V} can be $\mathcal{V}(\mathcal{I}, \mathcal{C}):=\mathcal{A}(\mathcal{I})$
\triangleright polynomial time
- Essentially ignore the certificate, decide the instance using \mathcal{A} if the output is Yes declare verified else not verified

■ Notice that the output of this \mathcal{V} is $\mathcal{V}(\mathcal{I}, C)=$ Yes iff $\mathcal{A}(\mathcal{I})=$ Yes

$\mathrm{P}=\mathrm{NP} ?$

The following problems we know or can be easily shown to be in P and NP. Notice the corresponding problems are of similar flavor to each other

P	NP
2 -SAT	$3-$ SAT
EULER-TOUR	HAMILTONIAN-CYCLE
MST	TSP
SHORTEST-PATH	LONGEST-PATH
INDEPENDENT-SET-TREE	INDEPENDENT-SET
BIPARTITE-MATCHING	3D-MATCHING
BIPARTITE-VERTEX-COVER	VERTEX-COVER
LINEAR PROGRAM	INTEGER LINEAR PROGRAM
PRIME	FACTOR

$P=N P ?$

- Many problems in CS, Math, OR, Engineering, etc. are polynomial time verifiable but have no known polynomial time algorithm
- Polynomial time verifiability seems like a weaker condition than polynomial time solvability
- no one has been able to prove that it is weaker (describes a larger class of problems)
- So it is unknown whether $\mathrm{P}=\mathrm{NP}$
$P=N P ?$
Many problems in CS, Math, OR, Engineering, etc. are polynomial time verifiable but have no known polynomial time algorithm

Polynomial time verifiability seems like a weaker condition than polynomial time solvability

- No proof that it is weaker (i.e. NP describes a larger class of problems)

So it is unknown whether $P=N P$

$\mathrm{P}=\mathrm{NP} ?$

$$
\text { Is } \mathrm{P}=\mathrm{NP} ?
$$

The biggest open problem in computer science
Is verifying a candidate solution is easier than solving a problem?

- Majority believes that $\mathrm{P} \neq \mathrm{NP}$
- One can check if any of possible candidate solutions verifies
- But candidate space can be exponential
- n ! possible Hamiltonian cycles are candidates for $\operatorname{TSP}(G, k)$
- ($\binom{n}{k}=O\left(n^{k}\right)$ possible subsets for CLique($\left.G, k\right)$
- No known " better way" than this
- No proof that there is no better way than this

To say that " P vs NP is the central unsolved problem in computer science" is a comical understatement. P vs NP is one of the deepest questions that human beings have ever asked.

Scott Aaronson

- There is a reason it is one of 7 million-dollar prize problem of the Clay Mathematical Institute (now one of the 6)
- If $\mathrm{P}=\mathrm{NP}$, then mathematical creativity can be automated (the ability to verify a proof would be the same as the ability to find a proof)
- Since verification seems to be way easier, every verifier would have the reasoning power of Gauss and the like
- By just programming your computer in polynomial time you can solve (perhaps) the other 5 Clay Institute problems
- "just because I can appreciate good music, doesn't mean that I would be able to create good music"

Then why isn't it obvious that $\mathrm{P} \neq \mathrm{NP}$

- Intuition tells us that brute-force search is unavoidable
- It is generally believed that there is no general and significantly better than brute-force method to solve NP problems
- Why can't we prove it?
- It is said that the great physicist Richard Feynman had trouble even being convinced that P vs NP was an open problem
- There are many many problems where we could avoid brute-force search
\triangleright See the list of "hard" problems and their easier "counterparts"
- Though not a decision problem, recall that we discussed that (to impress your boss) you can say that your algorithm for SORTING finds that one unique permutation out of the n ! possible ones

We try to characterize these hard problems and say that almost all of them all essentially the same

$$
P=N P ?
$$

- For $X \in \mathrm{NP}$ prove that there is no polynomial time algorithm

■ You proved $\mathrm{P} \neq \mathrm{NP}$ (You get a million dollars and A in this course)

$$
P=N P ?
$$

- For $X \in \mathrm{NP}$ prove that there is no polynomial time algorithm

■ You proved $\mathrm{P} \neq \mathrm{NP}$ (You get a million dollars and A in this course)

The Classes P and NP of Problems

The Class P: Decision problems that can be solved in polynomial time

The Class NP: Decision problems that can be verified in polynomial time

$\mathrm{P} \subseteq \mathrm{NP}$

The Class coNP of Problems

The Class coNP: Decision problems whose No instances can be verified in polynomial time

- Their No instances are Yes instances of their complement problems
- They are the complements of problems in NP
- Examples: $\overline{\operatorname{SAT}}(f)$, $\overline{\text { HAMILTONIAN }}(G)$
- Note that (the set) CoNP is not the complement of NP
- This definition leads to the question is NP = coNP?
- Irrespective of the answer to P vs NP? can we certify in polynomial time that G has no Hamiltonian cycle

NP vs coNP

The Class coNP: Decision problems whose No instances can be verified in polynomial time

The following result is not very difficult to see

$$
\mathrm{P} \subset \mathrm{coNP}
$$

Thus

$$
\mathrm{P} \subset \mathrm{NP} \cap \mathrm{CONP}
$$

We also know that

$$
\text { If } \mathrm{P}=\mathrm{NP} \text {, then } \mathrm{NP}=\mathrm{CoNP}
$$

This easily follows (read notes) but the converse is not known to be true

It is widely believed that

$\mathrm{P} \subsetneq \mathrm{NP} \cap \mathrm{CoNP}$

$\operatorname{FACTOR}(n, k)$ is in NP $\cap \operatorname{coNP}$

- $\operatorname{FACtor}(n, k) \in$ NP: A factor $p \leq k$ of n would certify that and can be verified with one division
- $\operatorname{FACTOR}(n, k) \in \operatorname{CONP:~Prime~factorization~of~} n$ can be a certificate that can be verified by checking if "factors" indeed are primes $(\operatorname{PRIME}(t) \in \mathrm{P})$

$$
\text { Is } \operatorname{FACTOR}(n, k) \in \mathrm{P} ?
$$

Majority believe it to be not in P, this belief is the basis of RSA cryptosystem
Thus, by this belief $\mathrm{P} \neq \mathrm{NP} \cap \mathrm{coNP}$

$\mathrm{NP}=\mathrm{coNP} ?$

The Class coNP: Decision problems whose No instances can be verified in polynomial time

Following are possibilities of relationships between these complexity classes

widely believed to be unlikely

The Class EXP of Problems

The Class EXP: Decision problems that can be solved in exponential time

There exists an algorithm that correctly outputs Yes/No on any instance and runtime is bounded by an exponential function in size of input

$\mathrm{NP} \subseteq$ EXP and $\mathrm{CoNP} \subseteq$ EXP

- Given that the problem is in NP (coNP), run the polynomial time verification algorithm on all possible certificates
- there are at most exponentially many certificates

■ If on any (all) of the possible certificates we get a Yes (No) answer from the verifier we get a decision

This gives us the following containment (believed by many to be so)

Figure: More likely hierarchy of the discussed complexity classes

