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Introduction

Computability: Is the problem solvable by a model (e.g. TM)?

Complexity: Is the problem solvable in O(n) steps?

What can be computed with limited resources?

Computational resources required by different computation models can be

Time (number of elementary/bit operations)

Space (memory cells)

Random bits (coin flips or calls to pseudorandom number generator
by randomized algorithms)

Communication bandwidth (number of bits transmitted, number of
messages exchanged)

Power or energy (number of KWH consumed, esp. important for
battery constrained devices)
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Computational Complexity Theory

Structural Complexity attempts to classify computational problems based
on the amount of resources required by their solutions

source: brillian.org
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Measuring Runtime of a TM

Runtime of a TM is the number of transitions as a function of input size

▷ Input size: number of characters on tape

Let M be a TM that halts on all inputs ▷ L(M) is decidable

Runtime of M is a function T : N 7→ N

T (n) is maximum number of transitions performed by M over all inputs of
length n

We perform asymptotic analysis on these runtime functions
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Measuring Runtime of a TM

Consider the language L =
{
0k1k | k ≥ 0

}
Algorithm Check if w ∈ L =

{
0k1k | k ≥ 0

}
1: if w is not of the form 0∗1∗ then
2: Reject

3: while both 0’s and 1’s remain on the tape do

4: Cross off the first 0 and the first 1 from the tape

5: if Only 0’s or only 1’s remain then
6: Reject
7: else
8: Accept
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Measuring Runtime of a TM

Consider the language L =
{
0k1k | k ≥ 0

}
Algorithm Check if w ∈ L =

{
0k1k | k ≥ 0

}
, |w | = n

1: if w is not of the form 0∗1∗ then ▷ O(n)
2: Reject

3: while both 0’s and 1’s remain on the tape do ▷ O(n)

4: Cross off the first 0 and the first 1 from the tape ▷ O(n)

5: if Only 0’s or only 1’s remain then ▷ O(n)
6: Reject
7: else
8: Accept

T (n) = O(n) + O(n × n) + O(n) = O(n2)
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Time-Bounded Complexity Classes

Structural Complexity attempts to classify computational problems based
on the amount of resources required by their solutions

TIME (t(n))

TIME (t(n)) = {L′ : ∃ a TM M with runtime O(t(n)) andL(M) = L′}

TIME (t(n)) is the class of problems decided by a TM in O(t(n)) runtime

We just showed that L =
{
0k1k | k ≥ 0

}
∈ TIME (n2)

Recall that if f (n) = O(n), then f (n) = O(n2), f (n) = O(n3) and so on

We generally want to place problems in the “smallest” class

▷ i.e. we want tight upper bounds
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Time-Bounded Complexity Classes

L =
{
0k1k | k ≥ 0

}
∈ TIME (n2) is not the best result

Algorithm Check if w ∈ L =
{
0k1k | k ≥ 0

}
if w is not of the form 0∗1∗ then

Reject

while both 0’s and 1’s remain on the tape do

if Number of 0’s and number of 1’s have different parity then
Reject

Cross off every other 0 and every other 1 from the tape

if Only 0’s or only 1’s remain then
Reject

else
Accept

00000000000001111111111111 x0x0x0x0x0x0xx1x1x1x1x1x1x xxx0xxx0xxx0xxxx1xxx1xxx1x

xxxxxxx0xxxxxxxxxxxx1xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx
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Time-Bounded Complexity Classes

L =
{
0k1k | k ≥ 0

}
∈ TIME (n2) is not the best result

Algorithm Check if w ∈ L =
{
0k1k | k ≥ 0

}
|w | = n

if w is not of the form 0∗1∗ then ▷ O(n)

Reject

while both 0’s and 1’s remain on the tape do ▷ O(log n)

if Number of 0’s and number of 1’s have different parity then ▷ O(n)
Reject

Cross off every other 0 and every other 1 from the tape ▷ O(n)

if Only 0’s or only 1’s remain then
Reject

else
Accept

Runtime of this TM is O(n log n)
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Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A basic TM M2 can simulate any multitape TM M1

M2 stores content of all k tapes in its single tape with # as separator
▷ Assuming # is not used by M1

For each symbol σ (of M1) M2 also uses it special version σ̂. For each
section of the tape σ̂ indicates location of the corresponding head

Finite
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Multitape TM = Basic TM

A basic TM M2 can simulate any multitape TM M1

M2 stores content of all k tapes in its single tape with # as separator
▷ Assuming # is not used by M1

For each symbol σ (of M1) M2 also uses it special version σ̂. For each
section of the tape σ̂ indicates location of the corresponding head

On input w1 = w11 . . .w1ℓ, w2 = w21 . . .w2m, w3 = w31 . . .w3n to M1

M2’s tape is #ŵ11 . . .w1ℓ#ŵ21 . . .w2m#ŵ31 . . .w3m#

To simulate a transition of M1, M2 move its head from first # to
(k + 1)st # to find current symbols (σ̂/virtual heads)

M2 then make the transition as dictated by transition of M2 (writing
new symbols and moving all virtual heads)

If a “head” needs to be moved beyond the #, M2 first shift all tape
content one step to right and continue
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Multitape TM can be more efficient

Theorem: A basic TM cannot decide L = {0k1k |k ≥ 0} in o(n log n) time

Multitape TM’s are not more powerful than basic TM (for computability)

Multitape TMs are easier to construct/describe and also efficient

We design a 2-tape TM to decide L =
{
0k1k | k ≥ 0

}
1 Suppose w ∈ {0, 1}∗ is given on tape 1

2 Scan tape 1 left-to-right to check if w ∈ 0∗1∗ ▷ O(n)

3 Copy all 1’s in w from tape 1 to tape 2 ▷ O(n)

4 Scan both tapes left-to-right to see if every 0 on tape 1 has a
corresponding 1 on tape 2 and vice-versa, if not reject ▷ O(n)

5 Accept if heads on both tapes read

L =
{
0k1k | k ≥ 0

}
can be decided in O(n) time by a two-tape TM
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Multitape TM can be more efficient

Multitape TMs are easier to construct/describe and also efficient

How efficient can multitape TMs be compared to basic TMs?

Theorem: For B =
{
ww |w ∈ 0, 1∗

}
the gap is quadratic

Theorem: Let t : N 7→ N satisfy t(n) ≥ n, for all n. Then every t(n) time
multi-tape TM Mk , has an equivalent O(t(n)2) time one-tape TM M1

The total length of all tapes of Mk is ≤ t(n). To simulate one transition
of Mk , M1 performs at most O(t(n)) steps.

Thus, total runtime of M1 is O(t(n))2

Suppose language A can be decided by a multi-tape TM in p(n) steps, for
some polynomial p. Then A can be decided by a one-tape TM in q(n)
steps, for some polynomial q(n)
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Universal Turing Machine

Universal Turing Machine

There is a Turing machine U that takes as input an encoding of an
arbitrary Turing machine M over Σ and a string w ∈ Σ∗ such that
U accepts ⟨M,w⟩ if and only if M accepts w

encoding of TM Yes/No

U
⟨M⟩

and w

· · ·

· · ·

· · ·

U

Tape 1: Encoding of M

Tape 2: Tape content of M

Tape 3: State of M
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The Universal TM with a clock

Theorem

There is a (one-tape) Turing machine U which takes as input:

the encoding of an arbitrary TM, M

an input string w

and a string of t 1’s with t > |w |
such that

1 U(⟨M⟩,w , 1t) halts in O(|M|2t2) steps and

2 U accepts (⟨M⟩,w , 1t) ⇐⇒ M accepts w in t steps

Proof Sketch: Make a multi-tape TM M ′ that takes (⟨M⟩,w , 1t) and
simulate M on w

M ′ simulates each step of M in at most O(t) steps

Total runtime of M ′ is O(t|M|)
Simulate M ′ by a one-tape TM, U with at most quadratic time blow-up
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The Time Hierarchy Theorem

Theorem

For all “reasonable” f , g : N 7→ N and for all n,

f (n) log f (n) = o(g(n)) =⇒ TIME (f (n)) ⊊ TIME (g(n))

▷ i.e. with substantial more time, we can solve strictly more problems, as
there are languages that can be decided in O(g(n)) but not O(f (n))

Reasonable means time-constructible f (n) is time-constructible, if ∃ a
TM, Mf such that ∀n, ∃x , |x | = n and Mf (x) halts in exactly f (n) steps.

▷ i.e. ∃ Mf , that on input of size n can output f (n) in time O(f (n))

Common functions ni , ni (log n)
j , 2n

i
, 2(log)

i
etc. are time-constructible

Why the time-constructible condition? We simulate TM’s for a
certain time. If a TM runtime is f (n), but the f (n) cannot be computed
in time O(f (n)), then simulating the TM in O(f (n)) time is problematic
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The Time Hierarchy Theorem

Theorem

For all “reasonable” f , g : N 7→ N and for all n,

f (n) log f (n) = o(g(n)) =⇒ TIME (f (n)) ⊊ TIME (g(n))

▷ i.e. with substantial more time, we can solve strictly more problems, as
there are languages that can be decided in O(g(n)) but not O(f (n))

To illustrate the ideas, we prove a simpler statement

Time(n) ⊊ Time(n2)

so we only prove the theorem for the example f (n) = n and g(n) = n2

▷ Note that n log n = o(n2)

We construct a TM D with runtime O(n2) whose language L(D) is not
accepted by any n time TM, i.e. L(D) ∈ TIME (n2) but L(D) /∈ TIME (n)
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The Time Hierarchy Theorem

Time(n) ⊊ Time(n2)

We construct a TM D with runtime O(n2) whose language L(D) is not
accepted by any n time TM, i.e. L(D) ∈ TIME (n2) but L(D) /∈ TIME (n)

Define a TM D that takes input encoding of a TM M as follows:

D(⟨M⟩):

Compute n = |⟨M⟩| (length of ⟨M⟩)
Simulate M on ⟨M⟩ for n1.9 steps and

D(⟨M⟩) =


accept if M rejects⟨M⟩
reject if M accepts⟨M⟩
accept if M does not halt (yet) on⟨M⟩
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The Time Hierarchy Theorem

Time(n) ⊊ Time(n2)

D(⟨M⟩):

Compute n = |⟨M⟩| (length of ⟨M⟩)
Simulate M on ⟨M⟩ for n1.9 steps and

D(⟨M⟩) =


accept if M rejects⟨M⟩
reject if M accepts⟨M⟩
accept if M does not halt (yet) on⟨M⟩

Lemma 1: L(D) ∈ TIME (n2)

Proof: D simulate M for n1.9 steps. Maintaining a step a counter and
other overhead requires n1.9 log n steps. Thus, L(D) ∈ TIME (n2).
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The Time Hierarchy Theorem

Time(n) ⊊ Time(n2)

D(⟨M⟩):

Compute n = |⟨M⟩| (length of ⟨M⟩)
Simulate M on ⟨M⟩ for n1.9 steps and

D(⟨M⟩) =


accept if M rejects⟨M⟩
reject if M accepts⟨M⟩
accept if M does not halt (yet) on⟨M⟩

Lemma 1: L(D) /∈ TIME (n)

Proof: Suppose L(D) ∈ TIME (n), i.e. ∃ a TM R, with runtime O(n) and
L(D) = L(R)

What is D(⟨R⟩)? D accepts ⟨R⟩ if R rejects or loops on ⟨R⟩
=⇒ L(D) ̸= L(R)
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The Time Hierarchy Theorem

Time(n) ⊊ Time(n2)

D(⟨M⟩):

Compute n = |⟨M⟩| (length of ⟨M⟩)
Simulate M on ⟨M⟩ for n1.9 steps and

D(⟨M⟩) =


accept if M rejects⟨M⟩
reject if M accepts⟨M⟩
accept if M does not halt (yet) on⟨M⟩

Theorem: L(D) ∈ TIME (n2) \ TIME (n) =⇒ Time(n) ⊊ Time(n2)

Technicalities: D can compute n1.9, because f (n) is constructible

Need n1.9 > O(n log n), n = |⟨R⟩| ≥ n0 so asymptotic behavior kicks off

n1.9 can be replaced with any function in ω(n log n) and o(n2 log n)

Proof of the general theorem follows exactly the same line
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The Time Hierarchy Theorem

Theorem

For all “time-constructible” f , g : N 7→ N and for all n,

f (n) log f (n) = o(g(n)) =⇒ TIME (f (n)) ⊊ TIME (g(n))

▷ i.e. with substantial more time, we can solve strictly more problems, as
there are languages that can be decided in O(g(n)) but not O(f (n))

Corollary: TIME (n) ⊊ TIME (n2) ⊊ TIME (n3) ⊊ TIME (n4)

Are there important everyday problems that are high up in this time
hierarchy?

Is there a natural problem that needs n40 time?
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Polynomial Time

P =
⋃
k∈N

TIME (nk)
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Extended Church Turing Thesis

Everyone’s intuitive notion of efficient algorithms ⊆ Polynmial-Time TM

More generally: TM can simulate every “reasonable” model of
computation with only polynomial increase in time
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NonDeterministic Turing Machine

A NonDeterministic Turing machine makes nondeterministic choices

qi qj

x → y, R

x → z, R

δ : Q× Γ 7→ P (Q× Γ× {L,R})

Finite
State
Control

I N P U T O U T P U T# · · ·
infinite rewritable tape

In each step

Reads a symbol at the head

head Writes a symbol at the head

Changes state

Moves head to left or right

Non Deterministically

x →
y, R

qi

qj

qk

x → y, R

x →
y, R

qi

qj

qk

x → z, L
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NonDeterministic Turing Machine

For an NTM a computation is a tree of configurations reachable from the
root (starting configuration qw ).

▷ For TM a computation is a sequence (path) of configurations

C0

C1 C2

C4

C3

C5

C7 C8

C6

C9

= q0w1w2 . . . wn

possible

from C2

transitions

starting configuration on
input w = w1 . . . wn

possible configurations

of the NTM

Imdad ullah Khan (LUMS) Complexity Theory 26 / 62



NonDeterministic Turing Machine

An NTM accepts a string w iff some computation path ends in an
accepting configuration

i.e. if there is at least one sequence of configurations from the starting
configuration to an accepting configuration

C0

C1 C2

C4

C3

C5

C7 C8

C6

C9

uqaccv

uqrejv

C0

C1 C2

C4

C3

C5

C7 C8

C6

C9

uqaccv

uqrejv

Non-accepting computation path Accepting computation path
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Nondeterminism

Are NFA(NTM) and DFA(TM) equal in computational power?

Ways to think about non-determinism

Parallel computation (with certain restriction)
and accepting when one of the node succeeds

Or tree of all possible walks from a start state
branching according to symbols on edges and
accepting if any leaf node is a final state

Or computing with guessing capability to choose
the next state (at certain states) and verifying
the right choice

Does verified guessing of NFA (NTM) increases its power over DFA (TM)?
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Time-Bounded Complexity Classes

NTIME (t(n))

NTIME (t(n)) = {L′ : ∃ NTM N, with runtime O(t(n)) and L(N) = L′}

i.e. NTIME (t(n)) is the class of problems decided by a NTM with
O(t(n)) runtime

TIME (t(n)) ⊆ NTIME (t(n)) (because every TM is a NTM)
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Nondeterministic Polynomial Time

NP =
⋃
k∈N

NTIME (nk)
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Nondeterministic Time Hierarchy Theorem

Theorem

For all “reasonable” f , g : N 7→ N and for all n,

for all n, f (n) log f (n) = o(g(n)) =⇒ NTIME (f (n)) ⊊ NTIME (g(n))

The technique for time hierarchy theorem does not directly work.

A NTM running in O(n) time may have 2O(n) computation branches.

How to determine in O(n2) time whether or not it accepts and then flip
this answer.

Uses a technique called lazy diagonalization
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3-sat ∈ NP

3-sat = {f : f is a satisfiable 3-cnf formula}

3-sat ∈ NTIME (nc) for constant c > 1

Proof Sketch: Suppose f is input in some natural format and f has n
variables and m clauses

1 Check if f is a valid 3-cnf formula

2 Set each variable xi nondeterministically to 0 or 1

3 Evaluate f with the chosen assignment and Accept if f is true
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ind-set(G , k) ∈ NP

ind-set(G , k) = {G : G has an independent set of size k}

ind-set(G , k) ∈ NTIME (nc) for constant c > 1

Proof Sketch: Suppose G = (V ,E ), |V | = n is input in some natural
format (e.g. adjacency matrix)

1 Nondeterministically choose a subset S ⊂ V of size k

2 Verify if S is an independent set, then Accept
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ham-cycle(G ) ∈ NP

ham-cycle(G ) = {G : G is Hamiltonian}

ham-cycle(G ) ∈ NTIME (nc) for constant c > 1

Proof Sketch: Suppose G = (V ,E ) is input in some natural format (e.g.
adjacency matrix)

1 Nondeterministically guess a cyclic permutation of V

2 Verify if the permutation is a Hamiltonian cycle
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Polynomial Time Verification

Need to formalize “checking a solution easily” independent of computation

A decision problem X is efficiently verifiable if

1 The claim: “I is a Yes instance of X” can be made in polynomial bits

There exists a polynomial sized certificate for Yes instances of X

2 A certificate can be verified in polynomial time

There exists a polynomial time algorithm V that takes the instance I
and the certificate C such that V(I, C) = Yes iff X (I) = Yes
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Polynomial Time Verification

Computing solution to a problem vs checking a proposed solution

Sometimes computing and verifying a solution are both “easy”

e.g. we can compute a MST of a graph and verify whether a claimed
solution is indeed a MST in polynomial time

Sometimes computing is not easy (yet) but verifying is easy

e.g. 3-sat(f ) we don’t know how to find a satisfying solution (or decide
if one exists)
But verifying a claimed solution can be done in one scan of f

Sometimes both computing and verifying a “claim” are not easy

e.g. not even clear how to “make” the claim that “G has no
Hamiltonian cycle”?
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Polynomial Time Verification

The mst(G , k) problem: Is there a spanning tree of G of weight ≤ k?

mst(G , k) is polynomial time verifiable

A certificate could be the “claimed spanning tree” T for G

T can be written by writing vertices ids in some order ▷ O(n log n) bits
Adjacency matrix of edges in T ▷ O(n2) bits

A verifier can check

if vertices of T are in G
If all edges in T are actually from G
If sum of weights of edges is k

Alternatively, a certificate could be an empty string ▷ 0 bits

A verifier can run Kruskals’s algorithm to find a MST T of G

If w(T ) ≤ k , it verifies the claim otherwise rejects the claim
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Polynomial Time Verification

3-sat(f ) is polynomial time verifiable

A certificate would be the assignment of 0 and 1’s to all variables

A verifier can evaluate f with the assignment and if the value of f is 1 it
outputs Yes (=verified) otherwise No (=not verified)

Note that we do not have to design a verifier or a technique for certifying, we
only need to prove their existence

Verifier does not have to be unique

There can be many ways to certify

▷ e.g. an independent set can be certified as the set of vertices, set of
edges, complements thereof

Verifier does not have to read the certificate, recall the requirement
V(I, C) = Yes iff X (I) = Yes
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Polynomial Time Verification

clique(G , k) is polynomial time verifiable

Given an instance [G , k] of clique(G , k)

What could be a certificate of claim “[G , k] is Yes instance of clique(·, ·)”?

▷ What evidence prove that G has a clique of size k?

Is the certificate of polynomial length?

How can we verify that indeed [G , k] is a Yes instance of clique(G , k)

▷ Does the verifier need to read the certificate?

Is the verifier a polynomial time algorithm?
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Polynomial Time Verification

prime(n) and composite(n) are polynomial time verifiable

▷ Note that they are complement of each other

A certificate for the composite(n) problem can be a factor d

A verifier can just confirm that 1 < d < n and d |n

Theorem (AKS(2004))

There exists a polynomial time algorithm to check whether an integer is prime

A certificate for prime(n) can be an empty string

A verifier exists by the above theorem, using that if n is prime we verify the
claim if n is not a prime we reject the claim
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Polynomial Time Verification

vertex-cover(G , k) is polynomial time verifiable

What could be a certificate of claim “G has a vertex cover of size k”?

How can we verify that indeed “G has a vertex cover of size k?

hamiltonian(G ) is polynomial time verifiable

What could be a certificate of claim “G has a Hamiltonian cycle?”

How can we verify that indeed G has a Hamiltonian cycle?
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Polynomial Time Verification

Are all problems “efficiently” verifiable?

3-sat(f )
It decides whether the given formula f is not satisfiable

▷ sometime referred to as unsat(f )

Suppose one wants to claim that the formula f is not satisfiable

▷ Meaning this f is a Yes instance of 3-sat(f )

How can one make a polynomial sized certificate to make the claim?

▷ “ [0, 1, 1, 0, . . . 1] does not satisfy f ”, does not mean f is not satisfiable
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The Class P of Problems

The Class P: Decision problems that can be solved in polynomial time

There exists an algorithm that correctly outputs Yes/No on any instance

Recall: polynomial time is a good notion of “reasonable/efficient time”

Mainly because polynomials are closed under composition (reduction)

In practice degrees of polynomials are small

(Appropriately defined decision versions of) all these problems are in P

mst(G , k)

shortest-path(G , s, t, k)

prime(n)

bipartite-vertex-cover(G , k)

max-flow(G , t)
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The Class NP of Problems

The Class NP: Decision problems that can be verified in polynomial time

A problem X is efficiently verifiable if

The claim: “I is a Yes instance of X” can be made in polynomial bits

There exists a polynomial sized certificate for Yes instances of X

A certificate can be verified in polynomial time

There exists a polynomial time algorithm V that takes the instance I
and the certificate C such that V(I, C) = Yes iff X (I) = Yes

NP stands for “Non-deterministic Polynomial Time”

3-sat(f )

hamiltonian-cycle(G )

knapsack(U,w , v ,C )

independent-set(G , k)
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Polynomial Time Verification

Theorem

L ∈ NP ⇐⇒ there is a constant k and polynomial-time TM V such that

L =
{
x | ∃y ∈ Σ∗ [ |y | ≤ |x |c and V (x , y) accepts ]

}
NP = set of languages L if and only if there is a polynomial-length proofs
(aka. certificates or witnesses) for membership in L

Problems with the property that, once you have the solution, it is “easy”
to verify the solution
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Polynomial Time Verification

Theorem

L ∈ NP ⇐⇒ there is a constant k and polynomial-time TM V such that

L =
{
x | ∃y ∈ Σ∗ [ |y | ≤ |x |c and V (x , y) accepts ]

}
Proof :

L =
{
x | ∃y ∈ Σ∗ [ |y | ≤ |x |c and V (x , y) accepts ]

}
=⇒ L ∈ NP

Define NTM N(x): Guess y of length at most |x |c , Output V (x , y)

L ∈ NP =⇒ L =
{
x | ∃y ∈ Σ∗ [ |y | ≤ |x |c and V (x , y) accepts ]

}
Suppose N is a poly-time NTM that decides L.

Define V (x , y) to accept iff y encodes an accepting computation history
of N on x
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P ⊆ NP

P ⊆ NP

Let X ∈ P

By definition, there exists a polynomial time algorithm A which decides X

We need to argue existence of a poly time verifier for X and poly sized
certificate for Yes instances of X

The certificate could be an empty string

Given an instance I of X and a certificate C to witness that X (I) = Yes

V can be V(I, C) := A(I) ▷ polynomial time

Essentially ignore the certificate, decide the instance using A if the output is
Yes declare verified else not verified

Notice that the output of this V is V(I,C ) = Yes iff A(I) = Yes

Imdad ullah Khan (LUMS) Complexity Theory 47 / 62



P = NP?

The following problems we know or can be easily shown to be in P and NP.
Notice the corresponding problems are of similar flavor to each other

P NP

2-sat 3-sat

euler-tour hamiltonian-cycle

mst tsp

shortest-path longest-path

independent-set-tree independent-set

bipartite-matching 3d-matching

bipartite-vertex-cover vertex-cover

linear program integer linear program

prime factor
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P = NP?

Many problems in CS, Math, OR, Engineering, etc. are polynomial time
verifiable but have no known polynomial time algorithm

Polynomial time verifiability seems like a weaker condition than polynomial
time solvability

no one has been able to prove that it is weaker (describes a larger class
of problems)

So it is unknown whether P = NP
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P = NP?

Is P = NP?

The biggest open problem in computer science

Is verifying a candidate solution is easier than solving a problem?

Majority believes that P ̸= NP

One can check if any of possible candidate solutions verifies

But candidate space can be exponential

n! possible Hamiltonian cycles are candidates for tsp(G , k)(
n
k

)
= O(nk) possible subsets for clique(G , k)

No known “ better way” than this

No proof that there is no better way than this
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P = NP?

To say that “P vs NP is the central unsolved problem in computer
science” is a comical understatement. P vs NP is one of the deepest
questions that human beings have ever asked.

Scott Aaronson

There is a reason it is one of 7 million-dollar prize problem of the Clay
Mathematical Institute (now one of the 6)

If P = NP, then mathematical creativity can be automated (the ability to
verify a proof would be the same as the ability to find a proof)

Since verification seems to be way easier, every verifier would have the
reasoning power of Gauss and the like

By just programming your computer in polynomial time you can solve
(perhaps) the other 5 Clay Institute problems

“just because I can appreciate good music, doesn’t mean that I would be
able to create good music”
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P = NP?

Then why isn’t it obvious that P ̸= NP

Intuition tells us that brute-force search is unavoidable

It is generally believed that there is no general and significantly better than
brute-force method to solve NP problems

Why can’t we prove it?

It is said that the great physicist Richard Feynman had trouble even being
convinced that P vs NP was an open problem

There are many many problems where we could avoid brute-force search

▷ See the list of “hard” problems and their easier “counterparts”

Though not a decision problem, recall that we discussed that (to impress
your boss) you can say that your algorithm for sorting finds that one
unique permutation out of the n! possible ones

We try to characterize these hard problems and say that almost all of
them all essentially the same
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P = NP?

Computational Problems

Computable Problems

NP

P

NP

P

For X ∈ NP prove that there is no polynomial time algorithm

You proved P ̸= NP (You get a million dollars and A in this course)
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The Classes P and NP of Problems

The Class P: Decision problems that can be solved in polynomial time

The Class NP: Decision problems that can be verified in polynomial time

P ⊆ NP
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The Class coNP of Problems

The Class coNP: Decision problems whose No instances can be
verified in polynomial time

Their No instances are Yes instances of their complement problems

They are the complements of problems in NP

Examples: sat(f ) , hamiltonian(G )

Note that (the set) coNP is not the complement of NP

This definition leads to the question is NP = coNP?

Irrespective of the answer to P vs NP? can we certify in polynomial time
that G has no Hamiltonian cycle
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NP vs coNP

The Class coNP: Decision problems whose No instances can be verified
in polynomial time

The following result is not very difficult to see

P ⊂ coNP

Thus

P ⊂ NP ∩ coNP

We also know that

If P = NP, then NP = coNP

This easily follows (read notes) but the converse is not known to be true
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prime and factoring

It is widely believed that P ⊊ NP ∩ coNP

factor(n, k) is in NP ∩ coNP

factor(n, k) ∈ NP: A factor p ≤ k of n would certify that and can
be verified with one division

factor(n, k) ∈ coNP: Prime factorization of n can be a certificate
that can be verified by checking if “factors” indeed are primes
(prime(t) ∈ P)

Is factor(n, k) ∈ P ?

Majority believe it to be not in P, this belief is the basis of RSA cryptosystem

Thus, by this belief P ̸= NP ∩ coNP
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NP = coNP?

The Class coNP: Decision problems whose No instances can be verified
in polynomial time

Following are possibilities of relationships between these complexity classes

P = NP = co-NP NP = co-NP

co-NP co-NP

P

NP NP

P

NP ∩ co-NP

P = NP ∩ co-NP

widely believed to be unlikely

Regarded as most likely
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The Class EXP of Problems

The Class EXP: Decision problems that can be solved in exponential
time

There exists an algorithm that correctly outputs Yes/No on any instance
and runtime is bounded by an exponential function in size of input
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NP ⊆ EXP and coNP ⊆ EXP

Given that the problem is in NP (coNP), run the polynomial time
verification algorithm on all possible certificates

there are at most exponentially many certificates

If on any (all) of the possible certificates we get a Yes (No) answer
from the verifier we get a decision

This gives us the following containment (believed by many to be so)

EXP

co-NPNP

P

NP ∩ co-NP

Figure: More likely hierarchy of the discussed complexity classes
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