Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

Rice's Theorem

General Undecidability and Unrecognizability

 $L = \{ \langle M, w \rangle :$ on input w, M tries to move head past the leftmost cell $\}$

L is undecidable

To prove L undecidable, we reduce A_{TM} (an undecidable problem) to it

 $A_{TM} \leq_m L$

On input $\langle M, w \rangle$ to A_{TM} , design a TM N as follows:

- Initially, the tape of N contains a special symbol # followed by w
- N simulate M on w, if N's head hit # move it to right (M tries to move head past the left-most cell)
- If M accepts, N move its head past to left of #

Define $f : A_{TM} \mapsto L$ as $f(\langle M, w \rangle) = \langle N, w \rangle$

$$\langle M, w \rangle \in A_{TM} \iff \langle N, w \rangle \in L$$

General Undecidability and Unrecognizability

 $L = \{ \langle M, w \rangle :$ on input w M tries to moves head left at least once $\}$

L is decidable

To prove L decidable, we construct N to decide it

On input $\langle M, w \rangle$ to N, it works as follows:

• Run *M* on *w* for |Q| + |w| + 1 steps,

• If *M* ever moves it head left **Accept**

 $\mathsf{else}~Reject$

General Undecidability and Unrecognizability

Generally, we have seen analyzing programs (Turing machines) is hard Rice's theorem makes the general statement of undecidability

Any non-trivial semantic property P of Turing machines is undecidable

Non-trivial: Not all TMs possess or lack the property

 $\mathcal{M}_{P=Yes} = \{M : \text{TM } M \text{ has the property } P, \text{ i.e. } P(M) = Yes\}$ $\mathcal{M}_{P=No} = \{M : \text{TM } M \text{ does not have the property } P, \text{ i.e. } P(M) = No\}$

There are TMs with the property and there are TMs without the property

$$\mathcal{M}_{P=Yes} \neq \emptyset$$
 $\mathcal{M}_{P=No} \neq \emptyset$

Trivial properties examples: $L(M) \subset \Sigma^*$, $|L(M)| \ge 0$

Semantic: The property relates to the behavior of TMs

For all TM M_1 and M_2 , if $L(M_1) = L(M_2) \implies P(M_1) = P(M_2)$

Semantic and non-semantic properties

Semantic

- *M* accepts "010"
- M accepts $w \Leftrightarrow M$ accepts w^R
- $L(M) = \Sigma^*$
- $L(M) = \emptyset$
- L(M) is regular
- |L(M)| = 36

Non-semantic

- *M* halts and reject "010"
- M moves its head left on input w
- M has 36 states
- *M* has ≥ 3 transitions from at least one state
- M reads \leq 36 tapes cells
- M makes 36 transitions on "010"

Rice's Theorem

For a nontrivial semantic property \mathbb{P} , $L_{\mathbb{P}} = \{ \langle M \rangle : \mathbb{P}(M) = \mathbf{Yes} \}$ is undecidable

To prove $L_{\mathbb{P}}$ undecidable reduce A_{TM} (an undecidable problem) to it

Let N be a TM that accepts no string, i.e. $L(N) = \emptyset$

Since \mathbb{P} is non-trivial, there exists a machine N', such that $\mathbb{P}(N') = \neg \mathbb{P}(N)$

Case 1: $\mathbb{P}(N) = \mathbf{No}$ (and $\mathbb{P}(N') = \mathbf{Yes}$)

On input $\langle M, w \rangle$ to A_{TM} , define a TM M_w as follows

 $M_w(x) :=$ If M accepts w and N' accepts x, then **Accept** else **Do not Accept**

 $M \text{ accepts } w \implies L(M_w) = L(N'). \ \mathbb{P}(N') = \mathbf{Yes} = \mathbb{P}(M_w) \implies \langle M_w \rangle \in L_{\mathbb{P}}$

 $\begin{array}{l} M \text{ does not accept } w \implies L(M_w) = \emptyset = L(N). \\ \mathbb{P}(N) = \mathbf{No} = \mathbb{P}(M_w) \implies \langle M_w \rangle \notin L_{\mathbb{P}} \end{array}$

In either case we get answer to $\langle M, w \rangle \in A_{TM}$

Rice's Theorem

For a nontrivial semantic property \mathbb{P} , $L_{\mathbb{P}} = \{ \langle M \rangle : \mathbb{P}(M) = \mathbf{Yes} \}$ is undecidable

To prove $L_{\mathbb{P}}$ undecidable reduce A_{TM} (an undecidable problem) to it

Let N be a TM that accepts no string, i.e. $L(N) = \emptyset$

Since \mathbb{P} is non-trivial, there exists a machine N', such that $\mathbb{P}(N') = \neg \mathbb{P}(N)$

Case 2: $\neg \mathbb{P}(N) = \mathbf{No} (\text{ and } \neg \mathbb{P}(N') = \mathbf{Yes})$

On input $\langle M, w \rangle$ to A_{TM} , define a TM M_w as follows

 $M_w(x) :=$ If M accepts w and N' accepts x, then **Accept** else **Do not Accept**

 $M \text{ accepts } w \implies L(M_w) = L(N'). \ \neg \mathbb{P}(N') = \mathbf{Yes} = \neg \mathbb{P}(M_w) \implies \langle M_w \rangle \in L_{\neg \mathbb{P}}$

 $M \text{ does not accept } w \implies L(M_w) = \emptyset = L(N).$ $\neg \mathbb{P}(N) = \mathbf{No} = \neg \mathbb{P}(M_w) \implies \langle M_w \rangle \notin L_{\neg \mathbb{P}}$

Note that this proves that $A_{TM} \leq_m L_{\neg \mathbb{P}} = \overline{L_{\mathbb{P}}}$

 $\overline{L_{\mathbb{P}}}$ is undecidable $\iff L_{\mathbb{P}}$ is undecidable