Theory of Computation

Computability Theory: Decidability and Recognizability

■ Encoding Turing Machines and the Universal TM

- Computability

■ Halt: Undecidable Problems using Diagnolization
■ Accept: Undecidable Problems using Diagnolization
■ Turing Reductions
■ Mapping Reductions
■ Undecidable and Unrecognizable Problems
■ Rice Theorem

Imdad ullah Khan

More Computability Questions

More (meta) computational problems

```
\(E Q_{D F A}=\left\{\left\langle D_{1}, D_{2}\right\rangle: D_{1}, D_{2}\right.\) are DFAs, \(\left.L\left(D_{1}\right)=L\left(D_{2}\right)\right\}\)
\(E Q_{R E X}=\left\{\left\langle R_{1}, R_{2}\right\rangle: R_{1}, R_{2}\right.\) are Regexps, \(\left.L\left(R_{1}\right)=L\left(R_{2}\right)\right\}\)
EMPTY \(_{D F A}=\{\langle D\rangle: D\) is DFA, \(L(D)=\emptyset\}\)
EMPTY \(_{N F A}=\{\langle N\rangle: N\) is NFA, \(L(N)=\emptyset\}\)
EMPTY \(_{\text {Rex }}=\{\langle R\rangle: R\) is Regexp, \(L(R)=\emptyset\}\)
EMPTY \(_{T M}=\{\langle M\rangle: M\) is \(\operatorname{TM}, L(M)=\emptyset\}\)
\(E Q_{T M}=\left\{\left\langle D_{1}, M_{2}\right\rangle: M_{1}, M_{2}\right.\) are TMs, \(\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}\)
\(\operatorname{REGULAR}_{T M}=\{\langle M\rangle: M\) is TM, \(L(M)\) IS REGULAR \(\}\)
```


Queries about Regular Languages

Given regular languages $L, L_{1}, L_{2} \subset \Sigma^{*}$ and $L(M)=L, L\left(M_{i}\right)=L_{i}$

- Given $w \in \Sigma^{*}$, is $w \in L$?

Run M on w and check if M accepts w

- Is $L=\emptyset$?

Check if there is a path in M from start to final state

- Is L infinite?

Check if there is (non-simple) walk in M from start to final state

- Given regular languages, Is $L_{1}=L_{2}$?

Check if $\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)=\emptyset$
Try the questions $L=\Sigma^{*}$? $\quad L_{1} \cap L_{2}=\emptyset$? $\quad L_{1} \subseteq L_{2}$? Is L finite?

Queries about Regular Languages

EMPTY $_{\text {DFA }}$ is decidable
Since EMPTYDFA is clearly decidable (just need to check reachability of final state(s))

Since for NFA and Regexp there is an equivalent DFA, we conclude that EMPTY $_{\text {DFA }}$ and EMPTY Rex are also decidable

Queries about Regular Languages

$E Q_{D F A}$ is decidable
To check if $\left\langle D_{1}, D_{2}\right\rangle \in E Q_{D F A} \Longleftrightarrow L\left(D_{1}\right)=L\left(D_{2}\right)$
construct a DFA D such that $L(D)=\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)$
Note that by closure properties of regular languages $L(D)$ is regular, hence DFA D exist

Next check if $\langle D\rangle \in$ EMPTY $_{D F A}$

Queries about Regular Languages

$E Q_{R e x}$ is decidable
To prove that $E Q_{\text {Rex }}$ is decidable reduce it to $E Q_{D F A}$ (a decidable problem)
$E Q_{\text {Rex }} \leq_{m} E Q_{D F A}$
$f: E Q_{\text {Rex }} \mapsto E Q_{D F A}$ is a mapping reduction
Given $\left\langle R_{1}, R_{2}\right\rangle$, construct DFAs D_{1} and D_{2} such that $L\left(D_{1}\right)=L\left(R_{1}\right)$ and $L\left(D_{2}\right)=L\left(R_{2}\right)$
$f\left(\left\langle R_{1}, R_{2}\right\rangle\right)=\left\langle D_{1}, D_{2}\right\rangle$
By equality of corresponding languages we get

$$
\left\langle R_{1}, R_{2}\right\rangle \in E Q_{R e x} \Longleftrightarrow\left\langle D_{1}, D_{2}\right\rangle \in E Q_{D F A}
$$

Since $E Q_{D F A}$ is decidable we get that $E Q_{\text {Rex }}$ is also decidable

EMPTY $_{T M}$ is unrecognizable

EMPTY $_{T M}$ is unrecognizable
To prove EMPTY ${ }_{T M}$ unrecognizable reduce $\overline{A_{T M}}$ (:unrecognizable) to it
$\overline{A_{T M}} \leq_{m}$ EMPTY $_{T M}$
Given $\langle M, w\rangle$, design a machine M^{\prime} which outputs on w the same as M and rejects all other strings
i.e. On input x, M^{\prime} works as, $\quad M^{\prime}(x)= \begin{cases}M(x) & \text { if } x=w \\ \text { reject } & \text { otherwise }\end{cases}$

Define $f: \overline{A_{T M}} \mapsto$ EMPTY $_{T M} \quad$ as $\quad f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$
Note $L\left(M^{\prime}\right)= \begin{cases}\{w\} & \text { if } M \text { accepts } w \\ \emptyset & \text { else }\end{cases}$
$\langle M, w\rangle \notin A_{T M} \Leftrightarrow M$ does not accept $w \Leftrightarrow L\left(M^{\prime}\right)=\emptyset \Leftrightarrow\left\langle M^{\prime}\right\rangle \in$ EMPTY $_{T M}$
$E Q_{T M}$ is unrecognizable
To prove $E Q_{T M}$ unrecognizable reduce EMPTY ${ }_{T M}$ (:unrecognizable) to it EMPTY $_{T M} \leq_{m} E Q_{T M}$

Let M^{\prime} be a TM that rejects all strings \triangleright e.g. having no accept state or no transition to it
$L\left(M^{\prime}\right)=\emptyset$
Define f : EMPTY EM $\mapsto E Q_{T M} \quad$ as $\quad f(\langle M\rangle)=\left\langle M, M^{\prime}\right\rangle$

$$
\langle M\rangle \in \text { EMPTY }_{T M} \Longleftrightarrow L(M)=L\left(M^{\prime}\right) \Longleftrightarrow\left\langle M, M^{\prime}\right\rangle \in E Q_{T M}
$$

REGULAR $_{T M}$ is unrecognizable

REGULARTM $_{T M}$ is unrecognizable
To prove REGULAR ${ }_{T M}$ unrecognizable reduce $\overline{A_{T M}}$ (:unrecognizable) to it $\overline{A_{T M}} \leq_{m}$ REGULAR $_{T M}$

Given $\langle M, w\rangle$, design a TM M^{\prime} which outputs on x the same as M on w if $x=0^{n} 1^{n}$ and rejects all other strings
i.e. On input x, M^{\prime} works as, $\quad M^{\prime}(x)= \begin{cases}M(w) & \text { if } x=0^{n} 1^{n} \\ \text { reject } & \text { otherwise }\end{cases}$

Define $f: \overline{A_{T M}} \mapsto$ REGULAR $_{T M} \quad$ as $\quad f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$
■ $\langle M, w\rangle \in A_{T M} \Longrightarrow f(\langle M, w\rangle)=M^{\prime}$ such that M^{\prime} accepts $0^{n} 1^{n}$
■ $\langle M, w\rangle \notin A_{T M} \Longrightarrow f(\langle M, w\rangle)=M^{\prime}$ such that M^{\prime} accepts nothing
In the prior case, $L\left(M^{\prime}\right)$ is regular and in the latter case it is not

$$
\langle M, w\rangle \in \overline{A_{T M}} \Longleftrightarrow M^{\prime} \in \operatorname{REGULAR}_{T M}
$$

