Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

More Computability Questions

More (meta) computational problems

 $EQ_{DEA} = \{ \langle D_1, D_2 \rangle : D_1, D_2 \text{ are DFAs}, L(D_1) = L(D_2) \}$ $EQ_{REX} = \{\langle R_1, R_2 \rangle : R_1, R_2 \text{ are Regexps}, L(R_1) = L(R_2)\}$ EMPTY_{DFA} = { $\langle D \rangle$: D is DFA, $L(D) = \emptyset$ } EMPTY_{NFA} = { $\langle N \rangle$: N is NFA, $L(N) = \emptyset$ } EMPTY_{Rex} = { $\langle R \rangle$: R is Regexp, $L(R) = \emptyset$ } EMPTY_{TM} = { $\langle M \rangle$: M is TM, $L(M) = \emptyset$ } $EQ_{TM} = \{ \langle D_1, M_2 \rangle : M_1, M_2 \text{ are TMs}, L(M_1) = L(M_2) \}$ REGULAR_{TM} = { $\langle M \rangle$: M is TM, L(M) IS REGULAR}

Queries about Regular Languages

Given regular languages $L, L_1, L_2 \subset \Sigma^*$ and $L(M) = L, L(M_i) = L_i$

- Given $w \in \Sigma^*$. is $w \in L$? Run M on w and check if M accepts w
- Is $L = \emptyset$? Check if there is a path in M from start to final state
- Is / infinite? Check if there is (non-simple) walk in M from start to final state
- Given regular languages, Is $L_1 = L_2$? Check if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

Try the questions $L = \Sigma^*$? $L_1 \cap L_2 = \emptyset$? $L_1 \subseteq L_2$? Is L finite?

M

EMPTY DFA is decidable

Since EMPTY_{DFA} is clearly decidable (just need to check reachability of final state(s))

Since for NFA and Regexp there is an equivalent DFA, we conclude that

 $\operatorname{EMPTY}_{\textit{DFA}}$ and $\operatorname{EMPTY}_{\textit{Rex}}$ are also decidable

EQ_{DFA} is decidable

To check if $\langle D_1, D_2 \rangle \in EQ_{DFA} \iff L(D_1) = L(D_2)$ construct a DFA D such that $L(D) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$

Note that by closure properties of regular languages L(D) is regular, hence DFA D exist

Next check if $\langle D \rangle \in \text{EMPTY}_{DFA}$

EQ_{Rex} is decidable

To prove that EQ_{Rex} is decidable reduce it to EQ_{DFA} (a decidable problem)

 $EQ_{Rex} \leq_m EQ_{DFA}$

 $f: EQ_{Rex} \mapsto EQ_{DFA}$ is a mapping reduction Given $\langle R_1, R_2 \rangle$, construct DFAs D_1 and D_2 such that $L(D_1) = L(R_1)$ and $L(D_2) = L(R_2)$

 $f(\langle R_1, R_2 \rangle) = \langle D_1, D_2 \rangle$

By equality of corresponding languages we get

$$\langle {\it R}_1, {\it R}_2
angle \in {\it EQ}_{\it Rex} \iff \langle {\it D}_1, {\it D}_2
angle \in {\it EQ}_{\it DFA}$$

Since EQ_{DFA} is decidable we get that EQ_{Rex} is also decidable

$EMPTY_{TM}$ is unrecognizable

To prove EMPTY_{TM} unrecognizable reduce $\overline{A_{TM}}$ (:unrecognizable) to it

 $\overline{A_{TM}} \leq_m \text{EMPTY}_{TM}$

Given $\langle M, w \rangle$, design a machine M' which outputs on w the same as M and rejects all other strings

i.e. On input x, M' works as,
$$M'(x) = \begin{cases} M(x) & \text{if } x = w \\ \text{reject} & \text{otherwise} \end{cases}$$

Define $f : \overline{A_{TM}} \mapsto \text{EMPTY}_{TM}$ as $f(\langle M, w \rangle) = \langle M' \rangle$
Note $L(M') = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{else} \end{cases}$

 $\langle M,w\rangle\notin A_{\mathcal{T}M}\Leftrightarrow M \text{ does not accept } w\Leftrightarrow L(M')=\emptyset\Leftrightarrow \langle M'\rangle\in \text{EMPTY}_{\mathcal{T}M}$

EQ_{TM} is unrecognizable

To prove EQ_{TM} unrecognizable reduce EMPTY_{TM} (:unrecognizable) to it EMPTY_{TM} $\leq_m EQ_{TM}$

Let M' be a TM that rejects all strings \triangleright e.g. having no accept state or no transition to it

 $L(M') = \emptyset$

Define $f : \text{EMPTY}_{TM} \mapsto EQ_{TM}$ as $f(\langle M \rangle) = \langle M, M' \rangle$

 $\langle M\rangle \in \text{EMPTY}_{\mathcal{T}M} \iff L(M) = L(M') \iff \langle M, M'\rangle \in EQ_{\mathcal{T}M}$

REGULAR_{TM} is unrecognizable

REGULAR TM is unrecognizable

To prove REGULAR_{TM} unrecognizable reduce $\overline{A_{TM}}$ (:unrecognizable) to it

 $\overline{A_{TM}} \leq_m \operatorname{REGULAR}_{TM}$

Given $\langle M, w \rangle$, design a TM M' which outputs on x the same as M on w if $x = 0^n 1^n$ and rejects all other strings

i.e. On input x, M' works as,
$$M'(x) = \begin{cases} M(w) & \text{if } x = 0^n 1^n \\ \text{reject} & \text{otherwise} \end{cases}$$

Define $f : \overline{A_{TM}} \mapsto \operatorname{REGULAR}_{TM}$ as $f(\langle M, w \rangle) = \langle M' \rangle$

• $\langle M, w \rangle \in A_{TM} \implies f(\langle M, w \rangle) = M'$ such that M' accepts $0^n 1^n$ • $\langle M, w \rangle \notin A_{TM} \implies f(\langle M, w \rangle) = M'$ such that M' accepts nothing

In the prior case, L(M') is regular and in the latter case it is not

$$\langle M, w \rangle \in \overline{A_{TM}} \iff M' \in \operatorname{REGULAR}_{TM}$$