Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

Mapping Reduction

Mapping Reduction

Mapping Reduction is a general method to prove undecidability

A function $f : \Sigma^* \mapsto \Sigma^*$ is computable, if there is a Turing machine M, which on input w halts with f(w) on the tape

A language $A \subset \Sigma^*$ is mapping reducible to a language $B \subset \Sigma^*$ if there is a computable function $f : \Sigma^* \mapsto \Sigma^*$ such that for every

$$\forall w \in \Sigma^*, \qquad w \in A \iff f(w) \in B$$

Denoted by $A \leq_m B$ A is mapping reducible to B Note: not enough if

 $w \in A \implies f(w) \in B$

Mapping Reduction

Let $A_{DFA} = \{ \langle D, w \rangle : D \text{ a DFA}, w \in L(D) \}$

Let L be any regular language.

$L \leq_m A_{DFA}$

If L is a regular language, then there is a DFA D such that L = L(D)The following computable function yields a mapping reduction

$$f(w) := \langle D, w \rangle$$

 $w \in L \iff D \text{ accepts } w \iff \big[\langle D, w \rangle = f(w) \big] \in A_{DF\!A}$

Thus, f is a mapping reduction from L to A_{DFA}

 $A_{NFA} \leq_m A_{DFA}$

For every NFA N, there is a DFA D such that L(D) = L(N)

 \triangleright Recall subset construction and $\epsilon\text{-closure}$

The following function yields a mapping reduction from A_{NFA} to A_{DFA} For $\langle N, w \rangle$, let D be the DFA such that L(D) = L(N), then

 $f(\langle N, w \rangle) := \langle D, w \rangle$

Suppose $A \leq_m B$. If B is decidable, then A is decidable

Informally, if the harder problem *B* is decidable, then so should be *A* **Proof:** Let M_B be TM deciding *B* and $f : A \mapsto B$ be mapping reduction We construct M_A to decide M_B that works as follows:

 $M_B(w)$: Compute f(w), Run $M_B(f(w))$ and output its answer

$$w \in A \iff f(w) \in B$$

 $\implies M_B(w) \text{ accepts/rejects } \iff M_A(w) \text{ accepts/rejects}$

 TM_A maps input string w to f(w), runs M_B on f(w), and accept/reject accordingly

Suppose $A \leq_m B$. If B is recognizable, then A is recognizable

Informally, if the harder problem B is recognizable, then so should be A

Proof: Let M_B be TM recognizing B and $f : A \mapsto B$ be mapping reduction

We construct M_A to recognize M_B that works as follows:

 $M_B(w)$: Compute f(w), Run $M_B(f(w)$ if it halts, then output its answer $w \in A \iff f(w) \in B$ $\Longrightarrow M_B(w)$ accepts $\iff M_A(w)$ accepts $M_A(w)$

 M_A maps input string w to f(w), runs M_B on f(w), and accept if M_B does

The contrapositives of the above theorems yield negative results

Suppose $A \leq_m B$. If B is decidable, then A is decidable

Suppose $A \leq_m B$. If A is undecidable, then B is undecidable

Suppose $A \leq_m B$. If B is recognizable, then A is recognizable

Suppose $A \leq_m B$. If A is unrecognizable, then B is unrecognizable

We can get additional negative and positive results by transitivity

If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$

$$w \in A \iff f(w) \in B \iff g(f(w)) \in C$$

Proving the Halting problem undecidable using mapping reduction

HALT = { $\langle M, w \rangle$: *M* halts on input *w*} is undecidable

Proof: Need mapping reduction from <u>an undecidable problem</u> to HALT

The only undecidable problem we know is A_{TM}

Define
$$f : A_{TM} \mapsto \text{HALT}$$
 as:
 $f(\langle M, w \rangle) = \langle M', w \rangle$,

M' works as follows: Run M on w and accept w if M does, else loop

we have

$$\langle M, w
angle \in A_{TM} \iff \langle M', w
angle \in \text{halt}$$

$\overline{\mathrm{HALT}}$ is unrecognizable

 $\overline{\text{HALT}} = \{ \langle M, w \rangle : M \text{ does not halt on } w \} \}$

Proof: Need mapping reduction from an unrecognizable problem to \overline{HALT}

The only unrecognizable problem we know (so far) is $\overline{A_{TM}}$

The same mapping reduction $f : A_{TM} \mapsto \text{HALT}$ is also a mapping reduction from $\overline{A_{TM}}$ to $\overline{\text{HALT}} \mapsto \text{why}$?

$$\langle M, w
angle \in A_{TM} \iff \langle M', w
angle \in \text{Halt}$$

halt $\leq_m A_{TM}$

Define $f : \text{HALT} \mapsto A_{TM}$ as: $f(\langle M, w \rangle) = \langle M', w \rangle$, M' works as follows: Run M on w and accept w if M halts, else loop we have

$$\langle M, w
angle \in \text{Halt} \iff \langle M', w
angle \in A_{TM}$$

Corollary: $HALT_{TM} \equiv_m A_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can't decide!