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Reduction
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Turing Reduction

Reduction is a general method to prove undecidability

Reduce an undecidable problem to X to prove undecidability of X

We want to prove that a language L is undecidable. We
prove that if L is decidable, then so is ATM

ATM ≤ L

pronounced as ATM is reducible to L

This is impossible as we know ATM is undecidable

A ≤ B means B is at least as hard as A

▷ technically called Turing reduction

Note that the other direction, does not prove that L is undecidable
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Reduction: ATM ≤ halt

Using reduction we show that halting problem is undecidable

halt = {⟨M,w⟩ : M halts on input w} is undecidable

Proof: Suppose halt is decidable and MH is the decider TM

Using MH (the decider) we construct a TM MA to decide ATM

MA(⟨M,w⟩):

Run MH on ⟨M,w⟩ and
If MH accepts, run M on w until it halts and output
as M does

If MH rejects, then reject

⟨M,w⟩
accept

reject

w accept

reject Reject

Accept

MA on input ⟨M,w⟩, runs MH and (possibly) M to decide whether M accepts w

MMH
M halts on w?

⟨M,w⟩
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