Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

Reduction

Reduction is a general method to prove undecidability

Reduce an undecidable problem to X to prove undecidability of X

We want to prove that a language L is undecidable. We prove that if L is decidable, then so is A_{TM}

 $A_{TM} \leq L$

pronounced as A_{TM} is reducible to L

This is impossible as we know A_{TM} is undecidable

 $A \leq B$ means B is at least as hard as A

▷ technically called Turing reduction

Note that the other direction, does not prove that *L* is undecidable

Reduction: $A_{TM} \leq \text{HALT}$

Using reduction we show that halting problem is undecidable

HALT = { $\langle M, w \rangle$: *M* halts on input *w*} is undecidable

Proof: Suppose HALT is decidable and M_H is the decider TM Using M_H (the decider) we construct a TM M_A to decide A_{TM}

Run M_H on $\langle M, w \rangle$ and If M_H accepts, run M on w until it halts and output $M_A(\langle M, w \rangle)$: as M does If M_H rejects, then reject accept - accept - \rightarrow Accept w $\langle M, w \rangle$ $\langle M, w \rangle$ M_H Mhalts on w? reject -Reject * reject M_A on input $\langle M, w \rangle$, runs M_H and (possibly) M to decide whether M accepts w