Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

An unrecognizable problem

The complement of A_{TM}

 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM over } \Sigma, M \text{ accepts } w \in \Sigma^* \}$

 $A_{TM} \subset \{0,1\}^*$, What is its complement $\overline{A_{TM}}$?

If $x \in \{0,1\}^*$ be a string.

If $x \notin A_{TM}$, then can we say the machine does not accept the string?

```
▷ What machine? what string?
```

We define the decoding function as follows:

If $x \in \{0,1\}^*$ does not decode to a pair $\langle M, w \rangle$, then we say that x decodes to the pair $\langle D_M, \epsilon \rangle$, where D_M is a dummy Turing machine that accepts no string.

With this decoder we can say that

$$\overline{A_{TM}} = \{ \langle M, w \rangle : M \text{ a TM over } \Sigma, M \text{ does not accept } w \in \Sigma^* \}$$

A concrete unrecognizable problem

Earlier, we showed that there exists unrecognizable problems ▷ number of Turing machines is less than number of languages Can we give a concrete example of an unrecognizable problem?

 $L \subset \Sigma^*$: a language. If both L and \overline{L} are recognizable, then L is decidable

A concrete unrecognizable problem

Earlier, we showed that there exists unrecognizable problems ▷ number of Turing machines is less than number of languages Can we give a concrete example of an unrecognizable problem?

 $L \subset \Sigma^*$: a language. If both L and \overline{L} are recognizable, then L is decidable

1 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM over } \Sigma, M \text{ accepts } w \in \Sigma^* \}$ is recognizable

2 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM over } \Sigma, M \text{ accepts } w \in \Sigma^* \}$ is undecidable

 $\overline{A_{TM}} = \{ \langle M, w \rangle : M \text{ a TM over } \Sigma, M \text{ does not accept } w \in \Sigma^* \}$ is unrecognizable