Theory of Computation

Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability

■ Halt: Undecidable Problems using Diagnolization

- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

An unrecognizable problem

The complement of $A_{T M}$

$A_{T M}=\left\{\langle M, w\rangle: M\right.$ a TM over Σ, M accepts $\left.w \in \Sigma^{*}\right\}$
$A_{T M} \subset\{0,1\}^{*}, \quad$ What is its complement $\overline{A_{T M}}$?
If $x \in\{0,1\}^{*}$ be a string.
If $x \notin A_{T M}$, then can we say the machine does not accept the string?
\triangleright What machine? what string?
We define the decoding function as follows:
If $x \in\{0,1\}^{*}$ does not decode to a pair $\langle M, w\rangle$, then we say that x decodes to the pair $\left\langle D_{M}, \epsilon\right\rangle$, where D_{M} is a dummy Turing machine that accepts no string.

With this decoder we can say that
$\overline{A_{T M}}=\left\{\langle M, w\rangle: M\right.$ a TM over Σ, M does not accept $\left.w \in \Sigma^{*}\right\}$

A concrete unrecognizable problem

Earlier, we showed that there exists unrecognizable problems
\triangleright number of Turing machines is less than number of languages
Can we give a concrete example of an unrecognizable problem?
$L \subset \Sigma^{*}$: a language. If both L and \bar{L} are recognizable, then L is decidable

A concrete unrecognizable problem
Earlier, we showed that there exists unrecognizable problems
\triangleright number of Turing machines is less than number of languages
Can we give a concrete example of an unrecognizable problem?
$L \subset \Sigma^{*}$: a language. If both L and \bar{L} are recognizable, then L is decidable
$1 A_{T M}=\left\{\langle M, w\rangle: M\right.$ a TM over Σ, M accepts $\left.w \in \Sigma^{*}\right\}$ is recognizable
$2 A_{T M}=\left\{\langle M, w\rangle: M\right.$ a TM over Σ, M accepts $\left.w \in \Sigma^{*}\right\}$ is undecidable
$\overline{A_{T M}}=\left\{\langle M, w\rangle: M\right.$ a TM over Σ, M does not accept $\left.w \in \Sigma^{*}\right\}$ is unrecognizable

