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The ACCEPT Problem
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Another concrete Undecidable Problem

ATM = {⟨M,w⟩ : M a TM on Σ, M accepts w ∈ Σ∗}

Why would you be interested in ATM? Can you use it for autograding?

[Turing 1936] ATM is recognizable, but not decidable
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ATM is undecidable

ATM = {⟨M,w⟩ : M a TM on Σ, M accepts w ∈ Σ∗} is undecidable

Proof: Suppose ATM is decidable i.e. there exists a TM MA s.t.

MA(⟨M,w⟩) =

{
Accept if M accepts w

Reject if M does not accept w

Define a TM D that takes input encoding of a TM as follows:

D(⟨M⟩):
Run MA on ⟨M,M⟩ and output the opposite of MA

D(⟨M⟩) =

{
Reject if MA accepts ⟨M,M⟩
Accept if MA does not accept ⟨M,M⟩

MA outputs the same as its input M on any string w
D outputs the opposite of its input M on the fixed string w = ⟨M⟩

What if we run D on ⟨D⟩ D(⟨D⟩) =

{
Reject if D accepts ⟨D⟩
Accept if D does not accept ⟨D⟩
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ATM is undecidable

ATM = {⟨M,w⟩ : M a TM on Σ, M accepts w ∈ Σ∗} is undecidable

Another proof using the fact that ATM is recognizable

Proof: Suppose the TM R recognizes ATM , i.e.

R(⟨M,w⟩) =

{
Accept if M accepts w

Reject or Loop if M doesn’t accept w

Define a machine DR that takes input encoding of a TM and works as:

DR(⟨M⟩): Run R on ⟨M,M⟩ until it halts. Output the opposite answer

DR(⟨M⟩) =


Reject if M accepts ⟨M⟩ i.e. R(⟨M,M⟩) Accepts
Accept if M rejects ⟨M⟩ i.e. R(⟨M,M⟩) Rejects
Loop if M loops on ⟨M⟩ i.e. R(⟨M,M⟩) Loops
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Proof: Suppose the TM R recognizes ATM , i.e.

R(⟨M,w⟩) =

{
Accept if M accepts w

Reject or Loop if M doesn’t accept w

Define a machine DR that takes input encoding of a TM and works as:

DR(⟨DR⟩): Run R on ⟨DR ,DR⟩ until it halts. Output the opposite answer

DR(⟨DR⟩) =


Reject if DR accepts ⟨DR⟩ i.e. R(⟨DR ,DR⟩) Accepts
Accept if DR rejects ⟨DR⟩ i.e. R(⟨DR ,DR⟩) Rejects
Loop if DR loops on ⟨DR⟩ i.e. R(⟨DR ,DR⟩) Loops

No contradiction so far, we can only tell DH loops on ⟨DH⟩

⟨DR ,DR⟩ /∈ ATM but R(⟨DR ,DR⟩) loops ▷ R cannot be a decider
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