Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Halt: Undecidable Problems using Diagnolization
- Accept: Undecidable Problems using Diagnolization
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

Imdad ullah Khan

The ACCEPT Problem

Another concrete Undecidable Problem

 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM on } \Sigma, M \text{ accepts } w \in \Sigma^* \}$

Why would you be interested in A_{TM} ? Can you use it for autograding?

[Turing 1936] A_{TM} is recognizable, but not decidable

 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM on } \Sigma, M \text{ accepts } w \in \Sigma^* \}$ is undecidable **Proof:** Suppose A_{TM} is decidable i.e. there exists a TM M_A s.t.

$$M_{\mathcal{A}}(\langle M, w
angle) = egin{cases} \mathbf{Accept} & ext{if } M ext{ accepts } w \ \mathbf{Reject} & ext{if } M ext{ does not accept } w \end{cases}$$

Define a TM D that takes input encoding of a TM as follows:

 $D(\langle M \rangle):$ $D(\langle M \rangle) = \begin{cases} \text{Reject} & \text{if } M_A \text{ accepts } \langle M, M \rangle \\ \text{Accept} & \text{if } M_A \text{ does not accept } \langle M, M \rangle \end{cases}$

M_A outputs the same as its input *M* on any string *w D* outputs the opposite of its input *M* on the fixed string *w* = (*M*)

What if we run D on $\langle D \rangle \quad D(\langle D \rangle) = \begin{cases} \text{Reject} & \text{if } D \text{ accepts } \langle D \rangle \\ \text{Accept} & \text{if } D \text{ does not accept } \langle D \rangle \end{cases}$

Proof: Suppose A_{TM} is decidable, $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and i.e. there exists a TM M_A

output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathsf{Accept} & \text{if } M \text{ accepts } w \\ \mathsf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases}$ $D(\langle M \rangle) = \begin{cases} \text{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \text{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$ **Partial Output Table of** $M_A(\langle M, w \rangle)$ $\langle M_1 \rangle = \langle M_2 \rangle = \langle M_3 \rangle = \langle M_4 \rangle = \langle M_5 \rangle = \cdots = \langle D \rangle = \cdots$ accept reject reject accept M_1 accept M_2 M_2 M_4 M_{5} ÷ D

Proof: Suppose A_{TM} is decidable, i.e. there exists a TM M_A

 $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathbf{Accept} & \text{if } M \text{ accepts } w \\ \mathbf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases} \quad D(\langle M \rangle) = \begin{cases} \mathbf{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \mathbf{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$

Partial Output Table of $M_A(\langle M, w \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\cdots \langle D \rangle \cdots$
M_1	accept	accept	reject	reject	reject	accept
M_2	accept	reject	reject	accept	reject	\mathbf{accept}
M_3	reject	accept	accept	reject	accept	reject
M_4	accept	reject	accept	accept	reject	reject
M_5	reject	accept	reject	accept	reject	accept
÷						
D						-

: |

Proof: Suppose A_{TM} is decidable, i.e. there exists a TM M_A

 $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathbf{Accept} & \text{if } M \text{ accepts } w \\ \mathbf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases} \quad D(\langle M \rangle) = \begin{cases} \mathbf{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \mathbf{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$

Partial Output Table of $M_A(\langle M, w \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\cdots \langle D \rangle \cdots$
M_1	accept	accept	reject	reject	reject	accept
M_2	accept	reject	reject	accept	reject	accept
M_3	reject	accept	accept	reject	accept	reject
M_4	accept	reject	accept	accept	reject	reject
M_5	reject	accept	reject	accept	reject	accept
:						
D	reject					-
:						

Proof: Suppose A_{TM} is decidable, i.e. there exists a TM M_A

 $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathbf{Accept} & \text{if } M \text{ accepts } w \\ \mathbf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases} \quad D(\langle M \rangle) = \begin{cases} \mathbf{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \mathbf{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$

Partial Output Table of $M_A(\langle M, w \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\cdots \langle D \rangle \ \cdot \cdot$
M_1	accept	accept	reject	reject	reject	accept
M_2	accept	reject	reject	accept	reject	accept
M_3	reject	accept	accept	reject	accept	reject
M_4	accept	reject	accept	accept	reject	reject
M_5	reject	accept	reject	accept	reject	accept
÷						
D	reject	accept				-
:						

Proof: Suppose A_{TM} is decidable, i.e. there exists a TM M_A

 $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathbf{Accept} & \text{if } M \text{ accepts } w \\ \mathbf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases} \quad D(\langle M \rangle) = \begin{cases} \mathbf{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \mathbf{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$

Partial Output Table of $M_A(\langle M, w \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\cdots \langle D \rangle \ \cdot \cdot$
M_1	accept	accept	reject	reject	reject	accept
M_2	accept	reject	reject	accept	reject	accept
M_3	reject	accept	accept	reject	accept	reject
M_4	accept	reject	accept	accept	reject	reject
M_5	reject	accept	reject	accept	reject	accept
÷						
D	reject	accept	reject	reject	accept	-
:						

Proof: Suppose A_{TM} is decidable, i.e. there exists a TM M_A

 $D(\langle M \rangle)$: Run M_A on $\langle M, M \rangle$ and output the opposite of M_A

 $M_A(\langle M, w \rangle) = \begin{cases} \mathbf{Accept} & \text{if } M \text{ accepts } w \\ \mathbf{Reject} & \text{if } M \text{ doesn't accept } w \end{cases} \quad D(\langle M \rangle) = \begin{cases} \mathbf{Reject} & \text{if } M \text{ accepts } \langle M \rangle \\ \mathbf{Accept} & \text{if } M \text{ doesn't accept } \langle M \rangle \end{cases}$

Partial Output Table of $M_A(\langle M, w \rangle)$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	$\langle M_5 \rangle$	$\cdots \langle D \rangle \cdots$
M_1	accept	accept	reject	reject	reject	accept
M_2	accept	reject	reject	accept	reject	\mathbf{accept}
M_3	reject	accept	accept	reject	accept	reject
M_4	accept	reject	accept	accept	reject	reject
M_5	reject	accept	reject	accept	reject	accept
:						14. 1
D	reject	\mathbf{accept}	reject	reject	\mathbf{accept}	?
÷		of $D(D)$) is opr	osite o	$f M_{A}(T)$	$D(D) = D(\langle D \rangle)$

Computability Theory

 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM on } \Sigma, M \text{ accepts } w \in \Sigma^* \}$ is undecidable Another proof using the fact that A_{TM} is recognizable

Proof: Suppose the TM R recognizes A_{TM} , i.e.

$$R(\langle M, w \rangle) = \begin{cases} \mathsf{Accept} & \text{if } M \text{ accepts } w \\ \mathsf{Reject or Loop} & \text{if } M \text{ doesn't accept } w \end{cases}$$

Define a machine D_R that takes input encoding of a TM and works as: $D_R(\langle M \rangle)$: Run R on $\langle M, M \rangle$ until it halts. Output the opposite answer

$$D_R(\langle M \rangle) = \begin{cases} \text{Reject} & \text{if } M \text{ accepts } \langle M \rangle \text{ i.e. } R(\langle M, M \rangle) \text{ Accepts} \\ \text{Accept} & \text{if } M \text{ rejects } \langle M \rangle \text{ i.e. } R(\langle M, M \rangle) \text{ Rejects} \\ \text{Loop} & \text{if } M \text{ loops on } \langle M \rangle \text{ i.e. } R(\langle M, M \rangle) \text{ Loops} \end{cases}$$

 $A_{TM} = \{ \langle M, w \rangle : M \text{ a TM on } \Sigma, M \text{ accepts } w \in \Sigma^* \}$ is undecidable Another proof using the fact that A_{TM} is recognizable

Proof: Suppose the TM R recognizes A_{TM} , i.e.

$$R(\langle M, w \rangle) = \begin{cases} \mathsf{Accept} & \text{if } M \text{ accepts } w \\ \mathsf{Reject or Loop} & \text{if } M \text{ doesn't accept } w \end{cases}$$

Define a machine D_R that takes input encoding of a TM and works as:

 $D_{R}(\langle D_{R} \rangle): \text{Run } R \text{ on } \langle D_{R}, D_{R} \rangle \text{ until it halts. Output the opposite answer}$ $D_{R}(\langle D_{R} \rangle) = \begin{cases} \text{Reject} & \text{if } D_{R} \text{ accepts } \langle D_{R} \rangle \text{ i.e. } R(\langle D_{R}, D_{R} \rangle) \text{ Accepts} \\ \text{Accept} & \text{if } D_{R} \text{ rejects } \langle D_{R} \rangle \text{ i.e. } R(\langle D_{R}, D_{R} \rangle) \text{ Rejects} \\ \text{Loop} & \text{if } D_{R} \text{ loops on } \langle D_{R} \rangle \text{ i.e. } R(\langle D_{R}, D_{R} \rangle) \text{ Loops} \end{cases}$ No contradiction so far, we can only tell D_{H} loops on $\langle D_{H} \rangle$

$$\langle D_R, D_R \rangle \notin A_{TM}$$
 but $R(\langle D_R, D_R \rangle)$ loops $\triangleright R$ cannot be a decider

IMDAD ULLAH KHAN (LUMS)