
Theory of Computation

Computability Theory: Decidability and Recognizability

Encoding Turing Machines and the Universal TM

Computability

Undecidable Problems using Diagnolization

The Halting and Accept Problems

Turing Reductions

Mapping Reductions

Undecidable and Unrecognizable Problems

Rice Theorem

Imdad ullah Khan
Imdad ullah Khan (LUMS) Computability Theory 1 / 13



Computability Questions

Imdad ullah Khan (LUMS) Computability Theory 2 / 13



Languages about computation

Some meta-computational problems (problems about computations)

ADFA = {⟨D,w⟩ : D a DFA over Σ, D accepts w ∈ Σ∗ ↔ w ∈ L(D)}

ANFA = {⟨N,w⟩ : N a NFA over Σ, N accepts w ∈ Σ∗ ↔ w ∈ L(N)}

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}

Imdad ullah Khan (LUMS) Computability Theory 3 / 13



Universal Turing Machine

Theorem

There is a Turing machine U that takes as input an encoding of an
arbitrary Turing machine M over Σ and a string w ∈ Σ∗ such that
U accepts ⟨M,w⟩ if and only if M accepts w

In other words, the language ATM is Turing-recognizable.

There is no Universal DFA/NFA

In other words, ADFA and ANFA are not regular

Imdad ullah Khan (LUMS) Computability Theory 4 / 13



ADFA is decidable

ADFA = {⟨D,w⟩ : D a DFA over Σ, D accepts w ∈ Σ∗ ↔ w ∈ L(D)}

DFA is a special case of a Turing Machine.

Run the universal TM U on ⟨D,w⟩ and output the answer of D on w

Imdad ullah Khan (LUMS) Computability Theory 5 / 13



ANFA is decidable

ANFA = {⟨N,w⟩ : N an NFA over Σ, N accepts w ∈ Σ∗ ↔ w ∈ L(N)}

NFA = DFA is a special case of a Turing Machine.

Run the universal TM U on ⟨N,w⟩ and output the answer of N on w

Imdad ullah Khan (LUMS) Computability Theory 6 / 13



Is ATM decidable?

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and output the answer of M on w

What if M loops forever?

Imdad ullah Khan (LUMS) Computability Theory 7 / 13



Is ATM recognizable?

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M accepts w

What if M loops forever?

Imdad ullah Khan (LUMS) Computability Theory 8 / 13



Is haltTM decidable?

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M does halt and reject
otherwise

What if M loops forever?

Imdad ullah Khan (LUMS) Computability Theory 9 / 13



Is haltTM recognizable?

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M does halt

What if M loops forever?

Imdad ullah Khan (LUMS) Computability Theory 10 / 13



Existence of non-recognizable languages

There are non-recognizable languages

Assuming Church-Turing thesis, this means there are problems that no
computing device can ever solve ▷ Non-Computable Problems

We prove this first result of computability theory by a counting argument

We show that there are more problems than there are Turing machines

Languages over {0, 1}
Decision Problems

Turing Machines

RecognizesM1 L1

non-recognizable

Imdad ullah Khan (LUMS) Computability Theory 11 / 13



Existence of non-recognizable languages

There are more problems than there are Turing machines

For any set A there is no onto function from A to P(A)

Proof: Suppose f : A 7→ P(A) is an onto function.

Note that for x ∈ A, f (x) ∈ P(A), i.e. f (x) ⊆ A

Define S ⊂ A :=
{
x ∈ A : x /∈ f (x)

}
Since f is onto, the set S has a pre-image i.e. for some x ∈ A, f (x) = S

If x ∈ S , then x /∈ f (x) = S

If x /∈ S , then x ∈ f (x) = S

∴ ∀ x ∈ A, f (x) ̸= S , meaning f is not onto

No matter what the set A is, P(A) has strictly larger cardinality than A

Imdad ullah Khan (LUMS) Computability Theory 12 / 13



Existence of non-recognizable languages

There are more problems than there are Turing machines

For any set A there is no onto function from A to P(A)

Let M be the set of all Turing machines

M ⊂ {0, 1}∗ = B

Let L be the set of all languages over {0, 1}

since a language is a subset of B, we get L = P(B)

Suppose every language is recognizable, i.e.

∀L ∈ L, ∃M ∈ M such that L(M) = L

The mapping R : M 7→ L, such that R(M) = L(M) is an onto function ▷
a contradiction

Imdad ullah Khan (LUMS) Computability Theory 13 / 13


