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Computability Questions
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Languages about computation

Some meta-computational problems (problems about computations)

ADFA = {⟨D,w⟩ : D a DFA over Σ, D accepts w ∈ Σ∗ ↔ w ∈ L(D)}

ANFA = {⟨N,w⟩ : N a NFA over Σ, N accepts w ∈ Σ∗ ↔ w ∈ L(N)}

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}
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Universal Turing Machine

Theorem

There is a Turing machine U that takes as input an encoding of an
arbitrary Turing machine M over Σ and a string w ∈ Σ∗ such that
U accepts ⟨M,w⟩ if and only if M accepts w

In other words, the language ATM is Turing-recognizable.

There is no Universal DFA/NFA

In other words, ADFA and ANFA are not regular
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ADFA is decidable

ADFA = {⟨D,w⟩ : D a DFA over Σ, D accepts w ∈ Σ∗ ↔ w ∈ L(D)}

DFA is a special case of a Turing Machine.

Run the universal TM U on ⟨D,w⟩ and output the answer of D on w
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ANFA is decidable

ANFA = {⟨N,w⟩ : N an NFA over Σ, N accepts w ∈ Σ∗ ↔ w ∈ L(N)}

NFA = DFA is a special case of a Turing Machine.

Run the universal TM U on ⟨N,w⟩ and output the answer of N on w
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Is ATM decidable?

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and output the answer of M on w

What if M loops forever?
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Is ATM recognizable?

ATM = {⟨M,w⟩ : M a TM over Σ, M accepts w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M accepts w

What if M loops forever?
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Is haltTM decidable?

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M does halt and reject
otherwise

What if M loops forever?
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Is haltTM recognizable?

haltTM = {⟨M,w⟩ : M a TM over Σ, M halts on w ∈ Σ∗}

Run the universal TM U on ⟨M,w⟩ and accept if M does halt

What if M loops forever?
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Existence of non-recognizable languages

There are non-recognizable languages

Assuming Church-Turing thesis, this means there are problems that no
computing device can ever solve ▷ Non-Computable Problems

We prove this first result of computability theory by a counting argument

We show that there are more problems than there are Turing machines

Languages over {0, 1}
Decision Problems

Turing Machines

RecognizesM1 L1

non-recognizable
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Existence of non-recognizable languages

There are more problems than there are Turing machines

For any set A there is no onto function from A to P(A)

Proof: Suppose f : A 7→ P(A) is an onto function.

Note that for x ∈ A, f (x) ∈ P(A), i.e. f (x) ⊆ A

Define S ⊂ A :=
{
x ∈ A : x /∈ f (x)

}
Since f is onto, the set S has a pre-image i.e. for some x ∈ A, f (x) = S

If x ∈ S , then x /∈ f (x) = S

If x /∈ S , then x ∈ f (x) = S

∴ ∀ x ∈ A, f (x) ̸= S , meaning f is not onto

No matter what the set A is, P(A) has strictly larger cardinality than A
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Existence of non-recognizable languages

There are more problems than there are Turing machines

For any set A there is no onto function from A to P(A)

Let M be the set of all Turing machines

M ⊂ {0, 1}∗ = B

Let L be the set of all languages over {0, 1}

since a language is a subset of B, we get L = P(B)

Suppose every language is recognizable, i.e.

∀L ∈ L, ∃M ∈ M such that L(M) = L

The mapping R : M 7→ L, such that R(M) = L(M) is an onto function ▷
a contradiction

Imdad ullah Khan (LUMS) Computability Theory 13 / 13


