# Computability Theory: Decidability and Recognizability

- Encoding Turing Machines and the Universal TM
- Computability
- Undecidable Problems using Diagnolization
- The Halting and Accept Problems
- Turing Reductions
- Mapping Reductions
- Undecidable and Unrecognizable Problems
- Rice Theorem

## Imdad ullah Khan

## Encoding Turing Machines and the Universal TM

### Can Turing Machines be re-programmed?

Computers are "general purpose" machines – they are programmable (can execute other programs)

While a Turing Machine executes a fixed program – they are hard-wired (not programmable)

A universal Turing Machine U can analyze and simulate other TMs

Need a way to encode Turing Machines (like C++/Java/Python encodes computer programs)



#### We gave binary representation for common types of data



## **Encoding Turing Machines**

#### Encoding Turing Machine as bit strings



## **Encoding Turing Machines**

#### Any subset of Turing machines is a binary language

We gave an encoding of Turing machines as bit strings, thus a TM  $M \in \{0,1\}^*$ 

 $\therefore$  any set of Turing machines (a set of bit strings) is a subset of  $\{0,1\}^*$ 

The set of Turing machines is a language over  $\{0,1\}$  (each string is a binary encoding of a Turing machine)

### Universal Turing Machine

#### Universal Turing Machine



#### Theorem

There is a Turing machine U that takes as input an encoding of an arbitrary Turing machine M over  $\Sigma$  and a string  $w \in \Sigma^*$  such that U accepts  $\langle M, w \rangle$  if and only if M accepts w

Existence of a universal Turing machine is a fundamental property of Turing machines

DFA/NFA do not have this property