Theory of Computation

Turing Machines

- Turing Machine: Model of Computation
- Turing Machine: Anatomy and Working
- Turing Machine: Formal Definition and Rules of Computation
- Recognizable and Decidable Languages

■ Turing Machine: Levels of Abstraction
■ Varaints of Turing Machine and The Church-Turing Thesis

- Non-Deterministic Turing Machine

ImDAD ULLAH Khan

Turing Machine Variants

The Church-Turing Thesis

Turing Machine Variants

Turing Machines are Robust
Many different variants of Turing machines can be defined
The basic variant is robust - As long as any other variant reads and write a finite number of symbol in each step, the basic variant can simulate it

TM with stay option

Turing Machine with "stay" option can keep the head at a location instead of moving left or right

INFINITE REWRITABLE TAPE

$$
\delta: Q \times \Gamma \mapsto Q \times \Gamma \times\{L, R, S\}
$$

Equivalence of computational power of TM variants

How to prove two models have equal computational power?

Show that for M_{1} of one model, there is a machine M_{2} of the second model such that $L\left(M_{1}\right)=L\left(M_{2}\right)$ and vice versa

We say M_{2} simulates M_{1}
Configurations of M_{1} corresponds to configurations of M_{2}

Note that equivalent computational power does not mean equal efficiency or speed

TM with stay option = Basic TM

A TM with stay option has equal computational power as a basic TM

A TM with stay option M_{1} can simulate any basic TM M_{2}
M_{1} just does not use the stay option

TM with stay option $=$ Basic TM

A TM with stay option has equal computational power as a basic TM

A basic TM M_{2} can simulate any TM with stay option M_{1}

For every transition in M_{1} with stay instruction, M_{2} makes an additional transition moving the head right and then move left

Multitrack TM

A multitrack Turing Machine has a tape with multiple tracks and a single head
 In each step

- Reads k-d symbol at the head
- Changes state
- Writes a k-d symbol at the head
- Moves head to left or right
head

INFINITE REWRITABLE 2-TRACK TAPE

$$
\delta: Q \times \Gamma^{k} \mapsto Q \times \Gamma^{k} \times\{L, R\}
$$

Multitrack TM $=$ Basic TM

A basic TM M can simulate any multitrack TM M^{\prime}

Let $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \Gamma^{\prime}, q_{0}^{\prime}, q_{a c c}^{\prime}, q_{r e j}^{\prime}, \delta^{\prime}\right)$
We design M to simulate M^{\prime}, that works on composite symbols (representing the k-d symbols of M^{\prime})

$\Gamma^{\prime}=\{a, b, \sqcup\}$	
Γ^{\prime}	Γ
(a, a)	A
(a, b)	B
(a, \sqcup)	C
(b, a)	D
(b, b)	E
(b, \sqcup)	F
(\sqcup, a)	G
(\sqcup, b)	H
(\sqcup, \sqcup)	I

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A multitape TM M_{1} can simulate any basic TM M_{2}

Just use the first tape

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A basic TM M_{2} can simulate any multitape TM M_{1}

- M_{2} stores content of all k tapes in its single tape with \# as separator \triangleright Assuming \# is not used by M_{1}
■ For each symbol σ (of M_{1}) M_{2} also uses it special version $\hat{\sigma}$. For each section of the tape $\hat{\sigma}$ indicates location of the corresponding head

Multitape TM $=$ Basic TM

A multitape TM has equal computational power as of a basic TM
A basic TM M_{2} can simulate any multitape TM M_{1}

■ M_{2} stores content of all k tapes in its single tape with \# as separator \triangleright Assuming \# is not used by M_{1}
■ For each symbol σ (of M_{1}) M_{2} also uses its special version $\hat{\sigma}$. For each tape section $\hat{\sigma}$ indicates location of the corresponding head
On input $w_{1}=w_{11} \ldots w_{1 \ell}, w_{2}=w_{21} \ldots w_{2 m}, w_{3}=w_{31} \ldots w_{3 n}$ to M_{1}

- M_{2} 's tape is $\# \hat{w_{11}} \ldots w_{1 \ell} \# \hat{w_{21}} \ldots w_{2 m} \# \hat{w_{31}} \ldots w_{3 m} \# \sqcup$
- To simulate a transition of M_{1}, M_{2} move its head from first $\#$ to ($k+1$)st \# to find current symbols ($\hat{\sigma} /$ virtual heads)
- M_{2} then makes the transition as dictated by transition of M_{1} (writing new symbols and moving all virtual heads)
■ If a "head" needs to be moved beyond the \#, M_{2} first shift all tape content one step to right and continue

Multitape TM = Basic TM

If Multitape TM $=$ Basic TM, then why study them?
Some time it is easier to construct/describe multitape TM's
$L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is decidable

We design a 2-tape TM to decide L
1 Suppose $w \in\{a, b\}^{*}$ is given on tape 1
2 Scan tape 1 left-to-right to check if $w \in a^{*} b^{*}$
3 Copy all b's in w from tape 1 to tape 2
4 Scan both tapes left-to-right to see if every a on tape 1 has a corresponding b on tape 2 and vice-versa, if not reject
5 Accept if head on both tapes read -
Runtime on $a^{n} b^{n}$ of basic TM is $O\left(n^{2}\right)$, while that on 2 tape TM is $O(n)$

Multitape TM = Basic TM

If Multitape TM $=$ Basic TM, then why study them?
Some time it is easier to prove closure properties
Recognizable languages are closed under union
Suppose L_{1} and L_{2} are recognizable languages, recognized by M_{1} and M_{2}
We design a 2-tape TM to recognize $L_{1} \cup L_{2}$
Algorithm check if $w \in L_{1} \cup L_{2}$
1: while true do

2: Run M_{1} on tape 1 for one step
3: Run M_{2} on tape 2 for one step
4: Accept if either M_{1} or M_{2} accepts
\triangleright make one transition of M_{1}
\triangleright make one transition of M_{2}

Why not run M_{1} on tape 1 , then run M_{2} on tape 2 , accept if either does?

A Turing Machine with 2-way infinite tape can move its head left and right unrestricted

TM with 2-way infinite tape $=$ Basic TM

A 2 track TM M can simulate any TM M^{\prime} with a 2-way infinite tape

To simulate a move of M^{\prime}, M operates as follows

- If working on upper track, use states in Q^{R}, move head in same direction as M^{\prime}
- If working on lower track, use states in Q^{L}, move head in opp. direction as M^{\prime}

■ If move results in hitting Φ, switch to the other track

TM with 2-way infinite tape = Basic TM

A 2 track TM M can simulate any TM M^{\prime} with a 2 -way infinite tape

To simulate a move of M^{\prime}, M operates as follows

Turing Machine Variants

Turing Machines have equal computational power as

- TMs with stay option
- TMs with 2-way infinite tapes
- TMs with multiple tapes
- TMs with multitrack tapes
- TMs with multidimensional tapes
- Offline TMs

■ Nondeterministic TMs

- TMs with RAM
- Enumerators
- λ-Calculus (primitive recursive functions)
- Cellular Automata

Turing Machine Variants: Church-Turing thesis

Church-Turing thesis: Computable $=$ Computable by TM

Church-Turing Thesis

Any computational problem that can be solved by a physical device, can be solved by a Turing Machine

Any computational that can be performed by mechanical means can be carried out by a Turing Machine

Not a theorem \triangleright but no known computational model has more power than TM

Algorithms = Turing Machines

An algorithm to compute $f(w)$ is a TM which computes $f(w)$

