
Theory of Computation

Turing Machines

Turing Machine: Model of Computation

Turing Machine: Anatomy and Working

Turing Machine: Formal Definition and Rules of Computation

Recognizable and Decidable Languages

Turing Machine: Levels of Abstraction

Varaints of Turing Machine and The Church-Turing Thesis

Non-Deterministic Turing Machine

Imdad ullah Khan

Imdad ullah Khan (LUMS) Turing Machine 1 / 23

Turing Machine Variants

The Church-Turing Thesis

Imdad ullah Khan (LUMS) Turing Machine 2 / 23

Turing Machine Variants

Turing Machines are Robust

Many different variants of Turing machines can be defined

The basic variant is robust — As long as any other variant reads and write
a finite number of symbol in each step, the basic variant can simulate it

Imdad ullah Khan (LUMS) Turing Machine 3 / 23

TM with stay option

Turing Machine with “stay” option can keep the head at a location
instead of moving left or right

δ : Q× Γ 7→ Q× Γ× {L,R, S}

Finite
State
Control

I N P U C A U T P U TB · · ·
infinite rewritable tape

In each step

Reads a symbol at the head

Writes a symbol at the head

Changes state

Moves head to left or right or stay

head

Imdad ullah Khan (LUMS) Turing Machine 4 / 23

Equivalence of computational power of TM variants

How to prove two models have equal computational power?

Show that for M1 of one model, there is a machine M2 of the second
model such that L(M1) = L(M2) and vice versa

We say M2 simulates M1

Configurations of M1 corresponds to configurations of M2

Note that equivalent computational power does not mean equal efficiency
or speed

Imdad ullah Khan (LUMS) Turing Machine 5 / 23

TM with stay option = Basic TM

A TM with stay option has equal computational power as a basic TM

A TM with stay option M1 can simulate any basic TM M2

M1 just does not use the stay option

Imdad ullah Khan (LUMS) Turing Machine 6 / 23

TM with stay option = Basic TM

A TM with stay option has equal computational power as a basic TM

A basic TM M2 can simulate any TM with stay option M1

For every transition in M1 with stay instruction, M2 makes an additional
transition moving the head right and then move left

x→ y, S
qjqi

x→ y, R
qi qjq′

σ → σ, L

∀σ ∈ Γ

Imdad ullah Khan (LUMS) Turing Machine 7 / 23

Multitrack TM

A multitrack Turing Machine has a tape with multiple tracks and a single
head

δ : Q× Γk 7→ Q× Γk × {L,R}

Finite
State
Control

infinite rewritable 2-track tape

In each step

Reads k-d symbol at the head

Writes a k-d symbol at the head

Changes state

Moves head to left or right

head

I N P U C A U T P U TB · · ·
AU TB · · ·U B CX YZ

one 2-d symbol

Imdad ullah Khan (LUMS) Turing Machine 8 / 23

Multitrack TM = Basic TM

A basic TM M can simulate any multitrack TM M ′

Let M ′ = (Q ′,Σ′, Γ′, q′0, q
′
acc , q

′
rej , δ

′)

We design M to simulate M ′, that works on composite symbols
(representing the k-d symbols of M ′)

Formally, M = (Q ′,Σ, Γ, q′0, q
′
acc , q

′
rej , δ), where

Σ = Σ′ × Σ′ × . . .× Σ′︸ ︷︷ ︸
k times for k tracks

Γ = Γ′ × Γ′ × . . .× Γ′︸ ︷︷ ︸
k times for k tracks

δ(qi , (σ1, . . . , σ2)) = δ′(qi , ⟨σ1, . . . , σk⟩)

Γ′ = {a, b, }
Γ′ Γ

(a, a) A

(a, b) B

(a,) C

(b, a) D

(b, b) E

(b,) F

(, a) G

(, b) H

(,) I

Imdad ullah Khan (LUMS) Turing Machine 9 / 23

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Finite
State
Control

k infinite rewritable tapes

︷
︸︸

︷

k

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

δ : Q× Γk 7→ Q× Γk × {L,R}k

(a, b)→ (x, y), (R,L)
q0 q1

Imdad ullah Khan (LUMS) Turing Machine 10 / 23

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Finite
State
Control

k infinite rewritable tapes

︷
︸︸

︷

k

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

δ : Q× Γk 7→ Q× Γk × {L,R}k

(a, b)→ (x, y), (R,L)
q0 q1

Imdad ullah Khan (LUMS) Turing Machine 11 / 23

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Finite
State
Control

k infinite rewritable tapes

︷
︸︸

︷

k

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

δ : Q× Γk 7→ Q× Γk × {L,R}k

(a, b)→ (x, y), (R,L)
q0 q1

Imdad ullah Khan (LUMS) Turing Machine 12 / 23

Multitape TM

Multitape Turing Machine has k read/write tapes each with its head

Finite
State
Control

k infinite rewritable tapes

︷
︸︸

︷

k

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

I N P U T O U T P U T# · · ·

δ : Q× Γk 7→ Q× Γk × {L,R}k

(a, b)→ (x, y), (R,L)
q0 q1

Imdad ullah Khan (LUMS) Turing Machine 13 / 23

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A multitape TM M1 can simulate any basic TM M2

Just use the first tape

Imdad ullah Khan (LUMS) Turing Machine 14 / 23

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A basic TM M2 can simulate any multitape TM M1

M2 stores content of all k tapes in its single tape with # as separator
▷ Assuming # is not used by M1

For each symbol σ (of M1) M2 also uses it special version σ̂. For each
section of the tape σ̂ indicates location of the corresponding head

Finite
State
Control

︷
︸︸

︷

k

· · ·

· · ·

· · ·

M1

M2

ab

a b

c

d

10

a a

a

0

c

· · ·ab cĉa a a bd â# 100̂#

Finite
State
Control

Imdad ullah Khan (LUMS) Turing Machine 15 / 23

Multitape TM = Basic TM

A multitape TM has equal computational power as of a basic TM

A basic TM M2 can simulate any multitape TM M1

M2 stores content of all k tapes in its single tape with # as separator
▷ Assuming # is not used by M1

For each symbol σ (of M1) M2 also uses its special version σ̂. For
each tape section σ̂ indicates location of the corresponding head

On input w1 = w11 . . .w1ℓ, w2 = w21 . . .w2m, w3 = w31 . . .w3n to M1

M2’s tape is #ŵ11 . . .w1ℓ#ŵ21 . . .w2m#ŵ31 . . .w3m#

To simulate a transition of M1, M2 move its head from first # to
(k + 1)st # to find current symbols (σ̂/virtual heads)

M2 then makes the transition as dictated by transition of M1 (writing
new symbols and moving all virtual heads)

If a “head” needs to be moved beyond the #, M2 first shift all tape
content one step to right and continue

Imdad ullah Khan (LUMS) Turing Machine 16 / 23

Multitape TM = Basic TM

If Multitape TM = Basic TM, then why study them?

Some time it is easier to construct/describe multitape TM’s

L = {anbn : n ≥ 0} is decidable

We design a 2-tape TM to decide L

1 Suppose w ∈ {a, b}∗ is given on tape 1

2 Scan tape 1 left-to-right to check if w ∈ a∗b∗

3 Copy all b’s in w from tape 1 to tape 2

4 Scan both tapes left-to-right to see if every a on tape 1 has a
corresponding b on tape 2 and vice-versa, if not reject

5 Accept if head on both tapes read

Runtime on anbn of basic TM is O(n2), while that on 2 tape TM is O(n)

Imdad ullah Khan (LUMS) Turing Machine 17 / 23

Multitape TM = Basic TM

If Multitape TM = Basic TM, then why study them?

Some time it is easier to prove closure properties

Recognizable languages are closed under union

Suppose L1 and L2 are recognizable languages, recognized by M1 and M2

We design a 2-tape TM to recognize L1 ∪ L2

Algorithm check if w ∈ L1 ∪ L2

1: while true do

2: Run M1 on tape 1 for one step ▷ make one transition of M1

3: Run M2 on tape 2 for one step ▷ make one transition of M2

4: Accept if either M1 or M2 accepts

Why not run M1 on tape 1, then run M2 on tape 2, accept if either does?

Imdad ullah Khan (LUMS) Turing Machine 18 / 23

TM with 2-way infinite tape

A Turing Machine with 2-way infinite tape can move its head left and
right unrestricted

Finite
State
Control

read/write

head

2-way infinite rewritable tape

In each step

Reads a symbol at the head

Writes a symbol at the head

Changes state

Moves head to left or right

I N P U T O U T P U T# · · ·
0 1 2 3−1−2−3

· · ·
· · · · · ·

Imdad ullah Khan (LUMS) Turing Machine 19 / 23

TM with 2-way infinite tape = Basic TM

A 2 track TM M can simulate any TM M ′ with a 2-way infinite tape

2-way infinite tape infinite 2-track tape

head

· · ·

head

Finite
State
Control

Finite
State
Control

a · · ·
0 1 2 3−1−2−3

· · ·
· · · · · ·

b c d e f g h i
−4 4 5 abc

d e f g h i · · ·

left part right part

Φ
left part

right part

p

q

pL

qL

pR

qR

To simulate a move of M ′, M operates as follows

If working on upper track, use states in QR , move head in same direction as M ′

If working on lower track, use states in QL, move head in opp. direction as M ′

If move results in hitting Φ, switch to the other track

Imdad ullah Khan (LUMS) Turing Machine 20 / 23

TM with 2-way infinite tape = Basic TM

A 2 track TM M can simulate any TM M ′ with a 2-way infinite tape

2-way infinite tape infinite 2-track tape

head

· · ·

head

Finite
State
Control

Finite
State
Control

a · · ·
0 1 2 3−1−2−3

· · ·
· · · · · ·

b c d e f g h i
−4 4 5 abc

d e f g h i · · ·

left part right part

Φ
left part

right part

p

q

pL

qL

pR

qR

To simulate a move of M ′, M operates as follows

pR qR
(x, σ)→ (y, σ), L

pL qL
(x, σ)→ (y, σ), R

left part/lower trackright part/upper track

p q
x→ y, R

Imdad ullah Khan (LUMS) Turing Machine 21 / 23

Turing Machine Variants

Turing Machines have equal computational power as

TMs with stay option

TMs with 2-way infinite tapes

TMs with multiple tapes

TMs with multitrack tapes

TMs with multidimensional tapes

Offline TMs

Nondeterministic TMs

TMs with RAM

Enumerators

λ-Calculus (primitive recursive functions)

Cellular Automata

Imdad ullah Khan (LUMS) Turing Machine 22 / 23

Turing Machine Variants: Church-Turing thesis

Church-Turing thesis: Computable = Computable by TM

Church-Turing Thesis

Any computational problem that can be solved by a physical device, can
be solved by a Turing Machine

Any computational that can be performed by mechanical means can be
carried out by a Turing Machine

3 + 4 = 7

Real World Abstract World

Church-Turing Thesis

Not a theorem ▷ but no known computational model has more power than TM

Algorithms = Turing Machines

An algorithm to compute f (w) is a TM which computes f (w)

Imdad ullah Khan (LUMS) Turing Machine 23 / 23

