Theory of Computation

Turing Machines

- Turing Machine: Model of Computation
- Turing Machine: Anatomy and Working
- Turing Machine: Formal Definition and Rules of Computation
- Recognizable and Decidable Languages

■ Turing Machine: Levels of Abstraction

- Varaints of Turing Machine and The Church-Turing Thesis
- Non-Deterministic Turing Machine

ImDAD ULLAH Khan

Turing Machine: Three Levels of Abstraction

Turing Machine: Three Levels of Abstraction

Three Levels of Abstraction in Describing Turing Machines

- Low Level Description

Explicitly describe the finite state control, all states and transitions

- Intermediate Level Description

Describe in English the finite state control, state transition, writing on tape, and head movements
Should be readily translatable into a Low Level Description

- High Level Description

Give an algorithm in pseudocode or English
Skips standard details, just highlight the main idea of solution

Turing Machine: High Level description

High Level description of TM to decide $L=\left\{0^{2^{n}}: n \geq 0\right\}$
$\overline{\text { Algorithm Powers of } 2(w) \quad \triangleright \text { check if }|w|=2^{n}}$

1: while true do
2: \quad if $|w|=1$ then
3: return Accept
4: else if $|w|$ is odd then
5: return Reject
6: else
7: delete half of the 0's in w

In every iteration, the number of 0 's on the tape is halved. The string is accepted if and only if the number of 0 's is a power of 2 .

Turing Machine: Medium Level description

Medium Level description of TM to decide $L=\left\{0^{2^{n}}: n \geq 0\right\}$
1 Move the head from left to right, cross out every other 0
a If in step 1 there is only one 0 , accept
b If in step 1 there is an odd (>1) number of 0 's reject
2 Return the head back to the left end of the tape
3 Go back to step 1
Again, in every iteration, the number of 0 's on the tape is halved. The string is accepted if and only if the number of 0 's is a power of 2 .

Turing Machine: Low Level description

Low Level description of TM to decide $L=\left\{0^{2^{n}}: n \geq 0\right\}$

Turing Machine: Low Level description

Low Level description of TM to decide $L=\left\{0^{2^{n}}: n \geq 0\right\}$

Turing Machine: Low Level description

Low Level description of TM to decide $L=\left\{0^{2^{n}}: n \geq 0\right\}$

Run the TM on $\epsilon, 0,00,000$

Turing Machine: High Level description

High Level description of TM to decide $L=\left\{a^{n} b^{n}: n \geq 0\right\}$

Algorithm check if $w \in L=a^{n} b^{n}$
1: while true do
2: if $|w|=0$ then
3: return Accept
4: else
5:
delete an a and a b from first and second half of w respectively

In every iteration, the number of a^{\prime} and b 's in each half is reduced by 1 .
The string is accepted if and only if the first half is all and only a's and the second half is all and only b 's

Turing Machine: Medium Level description

Medium Level description of TM to decide $L=\left\{a^{n} b^{n}: n \geq 0\right\}$
1 Mark the first a as x and move head to the first b and mark it as y
2 Move the head left to the second a and mark it x and move the head to second b and mark it y

3 Repeat until all a's and b's are replaced with x 's and y 's
4 Move the head from left most to right most symbol and check if all and only x 's precede all and only y^{\prime} s
\triangleright No need to count now

Turing Machine: Low Level description

Low Level description of TM to decide $L=\left\{a^{n} b^{n}: n \geq 0\right\}$

Run the machine on $a a b b, \epsilon$, $a a a a b b b, a a b b b$

