Theory of Computation

Turing Machines

- Turing Machine: Model of Computation
- Turing Machine: Anatomy and Working
- Turing Machine: Formal Definition and Rules of Computation
- Recognizable and Decidable Languages

■ Turing Machine: Levels of Abstraction

- Varaints of Turing Machine and The Church-Turing Thesis
- Non-Deterministic Turing Machine

ImDAD ULLAH Khan

Turing Machine:
 Formal Definition and Rules of Computation

Turing Machine: Formal Definition

A Turing machine is a 7-tuple $T=\left(Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}, \delta\right)$

- Q: a finite set of states
- Σ : input alphabet $\sqcup \notin \Sigma$

■ Г: tape alphabet, $\Sigma \subseteq \Sigma$ and $\sqcup \in \Gamma$

- $q_{\text {accept }} \in Q$: is the accept state
- $q_{\text {reject }} \in Q$: is the reject state, $q_{\text {reject }} \neq q_{\text {accept }}$

■ $\delta: Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \times \Gamma \mapsto Q \times \Gamma \times\{L, R\}:$ transition function

- $q_{0} \in Q$: start state

Turing Machine: Configuration

A configuration is a representation of the current state of the Turing machine, the content of the tape, and the current location of the head

Machine Configuration $011010 \mathrm{q}_{4 \mathrm{LU}}$.

Formally, a configuration is a string $u q v$, where $u, v \in \Gamma^{*}, q \in Q$

- Current state is q

■ Tape contents is $u v$ followed by infinitely many \smile
■ Current head location is the first symbol in v

Turing Machine: Rules of Computation

A Turing machine is a 7-tuple $T=\left(Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}, \delta\right)$
Tape starts with input $w \in \Sigma^{*}$, followed by infinite \sqcup 's
Head is initially on the leftmost cell
Control starts in q_{0}
If current state is q and head is on a cell containing symbol $\sigma \in \Gamma, T$ transitions according to $\delta\left(q_{i}, \sigma_{i}\right)=\left(q_{j}, \sigma_{j}\right.$, $\left.\operatorname{dir} \in\{L, R\}\right)$, where

- q_{j} is the next state (q_{j} could be $=q_{i}$)
- σ_{j} is the symbol written on the current cell (σ_{j} could be $=\sigma_{i}$)

■ $\operatorname{dir}=L / R \Longrightarrow$ the head move to the cell on left/right \triangleright head is on leftmost cell and dir $=L \Longrightarrow$ head stays on same cell No transitions from $q_{\text {accept }}$ or $q_{\text {reject }}$
T halts when $q_{\text {accept }}$ or $q_{\text {reject }}$ is reached or there is no possible transition
T might loop forever

Turing Machine: Rules of Computation

A Turing machine is a 7-tuple $T=\left(Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}, \delta\right)$
On input $w \in \Sigma^{*}, \quad$ initial configuration $q_{0} w$
■ If $\delta(q, b)=\left(q^{\prime}, c, R\right)$, then configuration uaqbv yields $u a c q^{\prime} v$

$$
\triangleright u a q b v \succ u a c q^{\prime} v
$$

- If $\delta(q, b)=\left(q^{\prime}, c, L\right)$, then configuration uaqbv yields $u q^{\prime} a c v$

$$
\triangleright u a q b v \succ u q^{\prime} a c v^{\prime} v
$$

■ If $\delta(q, b)=\left(q^{\prime}, c, L\right)$, then configuration $q b v$ yields $q^{\prime} c v$

$$
\triangleright q b v \succ q^{\prime} c v
$$

Accepting configuration: $u q_{\text {accept }} V$
Rejecting configuration: $u q_{\text {reject }} v$

Turing Machine: Acceptance and Rejection

A TM $M=\left(Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{r e j e c t}, \delta\right)$ accepts a string $w \in \Sigma^{*}$ if there is a sequence of configurations $C_{0}, C_{2}, \ldots, C_{k}$ such that

- $C_{0}=q_{0} w$
- $C_{i} \succ C_{i+1}$ for $i=0,1 \ldots, k-1$

■ C_{k} is an accepting configuration i.e. C_{k} contains $q_{\text {accept }}$
We say that $C_{0} \succ^{*} C_{k}$
We refer to $C_{0}, C_{2}, \ldots, C_{k}$ as history or trace of M on w

