Turing Machines

- Turing Machine: Model of Computation
- Turing Machine: Anatomy and Working
- Turing Machine: Formal Definition and Rules of Computation
- Recognizable and Decidable Languages
- Turing Machine: Levels of Abstraction
- Varaints of Turing Machine and The Church-Turing Thesis
- Non-Deterministic Turing Machine

Imdad ullah Khan

Turing Machine: Formal Definition and Rules of Computation

Turing Machine: Formal Definition

A Turing machine is a 7-tuple $T = (Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$

- Q: a finite set of states
- Σ : input alphabet $\Box \notin \Sigma$
- \blacksquare $\Gamma :$ tape alphabet, $\Sigma \subseteq \Sigma$ and $\hdots \in \Gamma$
- $q_{accept} \in Q$: is the accept state
- $q_{reject} \in Q$: is the reject state, $q_{reject}
 eq q_{accept}$
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \mapsto Q \times \Gamma \times \{L, R\}$: transition function
- $q_0 \in Q$: start state

Turing Machine: Configuration

A configuration is a representation of the current state of the Turing machine, the content of the tape, and the current location of the head

Formally, a configuration is a string uqv, where $u, v \in \Gamma^*$, $q \in Q$

- Current state is q
- Tape contents is *uv* followed by infinitely many ∟
- Current head location is the first symbol in v

Turing Machine: Rules of Computation

A Turing machine is a 7-tuple $T = (Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$

Tape starts with input $w \in \Sigma^*$, followed by infinite \Box 's

Head is initially on the leftmost cell

Control starts in q_0

If current state is q and head is on a cell containing symbol $\sigma \in \Gamma$, T transitions according to $\delta(q_i, \sigma_i) = (q_j, \sigma_j, dir \in \{L, R\})$, where

- q_j is the next state $(q_j \text{ could be} = q_i)$
- σ_j is the symbol written on the current cell (σ_j could be $= \sigma_i$)
- $dir = L/R \implies$ the head move to the cell on left/right

▷ head is on leftmost cell and $dir = L \implies$ head stays on same cell No transitions from q_{accept} or q_{reject}

T halts when q_{accept} or q_{reject} is reached or there is no possible transition T might loop forever

Turing Machine: Rules of Computation

A Turing machine is a 7-tuple $T = (Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$

On input $w \in \Sigma^*$, initial configuration $q_0 w$

■ If $\delta(q, b) = (q', c, R)$, then configuration *uaqbv* yields *uacq'v* \triangleright *uaqbv* \succ *uacq'v*

• If $\delta(q, b) = (q', c, L)$, then configuration *uaqbv* yields uq'acv \triangleright *uaqbv* \succ *uq'acv'v*

If
$$\delta(q, b) = (q', c, L)$$
, then configuration qbv yields $q'cv$
 $\triangleright qbv \succ q'cv$

Accepting configuration: $U q_{accept} V$ Rejecting configuration: $U q_{reject} V$

Turing Machine: Acceptance and Rejection

A TM $M = (Q, \Sigma, \Gamma, q_0, q_{accept}, q_{reject}, \delta)$ accepts a string $w \in \Sigma^*$ if there is a sequence of configurations C_0, C_2, \ldots, C_k such that

•
$$C_0 = q_0 w$$

•
$$C_i \succ C_{i+1}$$
 for $i = 0, 1 ..., k - 1$

• C_k is an accepting configuration i.e. C_k contains q_{accept}

We say that $C_0 \succ^* C_k$

We refer to C_0, C_2, \ldots, C_k as history or trace of M on w