
CS 315 Theory of Computation

Streaming Algorithms

Streaming Model of Computation

Streaming Algorithms and DFA

Stream: Motivation and Applications

Synopsis: Sliding Window, Histogram, Wavelets

Sampling from Stream: Reservoir Sampling

Linear Sketch

Count-Min Sketch

AMS Sketch

Imdad ullah Khan

Imdad ullah Khan (LUMS) Streaming Model of Computation 1 / 1

Count-Min Sketch

Imdad ullah Khan (LUMS) Streaming Model of Computation 2 / 1

Count-min sketch

Count-min sketch stores frequencies of random groups of elements

▷ Cormode & Muthukrishnan (2004)

S = < a1, a2, a3, . . . , am > ai ∈ [n]

fj : frequency of j in S F = (f1, f2, . . . , fn)

Cannot store frequency of every element j ∈ [n]

Store total frequency of random groups in [n] (elements in hash buckets)

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?

return count[h(j)]

Imdad ullah Khan (LUMS) Streaming Model of Computation 3 / 1

Count-min sketch

Count-min sketch stores frequencies of random groups of elements

Algorithm : Count-Min Sketch (k, ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?
return count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :
1 2 3

1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

F :
1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1 Frequencies

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}
1 2 3 94 5 76 8

1 2 3

Imdad ullah Khan (LUMS) Streaming Model of Computation 4 / 1

Count-min sketch

Count-min sketch stores frequencies of random groups of elements

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

count
+
fn

f3 f1

f4
+

f2

+

k = 2/ϵ

Large k means better estimate (many smaller groups) but more space

f̃j : estimate for fj – output of algorithm

Imdad ullah Khan (LUMS) Streaming Model of Computation 5 / 1

Count-min sketch

Count-min sketch stores frequencies of random groups of elements

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Quality on f̃j :
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

count
+
fn

f3 f1

f4
+

f2

+

F

1 2 3 n

fr
eq
u
en

cy

.

. . .

h(·)

Bad caseNot so bad case

Sketchcount :

Imdad ullah Khan (LUMS) Streaming Model of Computation 6 / 1

Count-min sketch

Count-min sketch stores frequencies of random groups of elements

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Quality on f̃j :
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

count
+
fn

f3 f1

f4
+

f2

+

1 f̃j ≥ fj
Other elements that hash to h(j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1/2

f̃j = fj + Xj ▷ Xj : Excess in f̃j (error)

Xj =
∑

i∈[n]\j fi · 1h(i)=h(j) ▷ 1condition is indicator of condition

E (Xj) = E
(∑

i∈[n]\j

fi · 1h(i)=h(j)

)
=

∑
i∈[n]\j

fi ·
1

k
≤ ∥F∥1 ·

ϵ

2

By Markov inequality we get the bound
Imdad ullah Khan (LUMS) Streaming Model of Computation 7 / 1

Count-min sketch

Amplifying the probability of basic Count-Min Sketch

Keep t over-estimates, t = log(1/δ), k = 2/ϵ and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(t × k) ▷ sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

On input ai

for r = 1 to t do

count[r][hr (ai)]← count[r][hr (ai)] + 1
▷ increment count[r] at index hr (ai)

On query j ▷ query: F[j] =?

return min
1≤r≤t

count[r][hr (j)]

Imdad ullah Khan (LUMS) Streaming Model of Computation 8 / 1

Count-min sketch

Amplifying the probability of basic Count-Min Sketch

1

2

3

9

4

5

7

6

8

1

2

3

1

2

3

h1(·)h2(·) S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :

1 2 3

0 + 1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

h1(·)

h2(·)

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1
True
Frequencies

1 + 5 + 6 3 + 3 + 10 + 2 + 2

1 2 3 k
count[1][·] +1
count[2][·] +1
count[3][·] +1

...
count[t][·] +1

ht(a)h1(a)

On input a

On query a mini count[i][hi(a)]

Imdad ullah Khan (LUMS) Streaming Model of Computation 9 / 1

Count-min sketch

Amplifying the probability of basic Count-Min Sketch

1 f̃j ≥ fj

For every r , other elements that hash to hr (j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1− δ

Xjr : contribution of other elements to Count[r][hr (j)]

Pr
[
Xjr ≥ ϵ∥F∥1

]
≤ 1/2 for k = 2/ϵ

The event f̃j ≥ fj + ϵ∥F∥1 is ∀ 1 ≤ r ≤ t Xjr ≥ ϵ∥F∥1

Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤ (1/2)t

t = log(1/δ) =⇒ Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(
1
2

)log 1/δ
= δ

Count-Min sketch is an (ϵ∥F∥1, δ)-additive approximation algorithm

Space required is k · t integers = O(1/ϵ log(1/δ) log n) (plus constant)

Imdad ullah Khan (LUMS) Streaming Model of Computation 10 / 1

