STREAMING ALGORITHMS

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications
- Synopsis: Sliding Window, Histogram, Wavelets
- Sampling from Stream: Reservoir Sampling
- Linear Sketch
- Count-Min Sketch
- AMS Sketch

Imdad ullah Khan

Count-Min Sketch

Count-min sketch stores frequencies of random groups of elements

▷ Cormode & Muthukrishnan (2004)

 $\mathcal{S} = \langle a_1, a_2, a_3, \dots, a_m \rangle$ $a_i \in [n]$

- f_j : frequency of j in S $\mathbf{F} = (f_1, f_2, \dots, f_n)$
 - Cannot store frequency of every element $j \in [n]$
 - Store total frequency of random groups in [n] (elements in hash buckets)

Count-min sketch stores frequencies of random groups of elements

Algorithm : Count-Min Sketch (k, ϵ, δ)	
$\text{COUNT} \leftarrow \text{ZEROS}(k)$	\triangleright sketch consists of k integers
Pick a random $h: [n] \mapsto [k]$ from a 2-universe	al family ${\cal H}$
On input <i>a_i</i>	
$ ext{COUNT}[h(a_i)] \leftarrow ext{COUNT}[h(a_i)] + 1$	\triangleright increment count at index $h(a_i)$
On query <i>j</i>	⊳ query: F [<i>j</i>] =?
return COUNT[h(j)]	

 $\mathcal{S}: \ 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5$

Count-min sketch stores frequencies of random groups of elements

•
$$k = 2/\epsilon$$

Large k means better estimate (many smaller groups) but more space

• \tilde{f}_j : estimate for f_j – output of algorithm

Count-min sketch stores frequencies of random groups of elements

Large k means better estimate but more space

• \tilde{f}_j : estimate for f_j – output of algorithm

Quality on \tilde{f}_j :

Count-min sketch stores frequencies of random groups of elements

•
$$k = 2/\epsilon$$

- Large *k* means better estimate but more space
- \tilde{f}_j : estimate for f_j output of algorithm

Quality on \tilde{f}_j :

1 $\tilde{f}_j \geq f_j$

• Other elements that hash to h(j) contribute to \tilde{f}_j

2 $Pr[\tilde{f}_j \leq f_j + \epsilon ||F||_1] \geq 1/2$

By Markov inequality we get the bound

COUNT $\begin{array}{c} f_{+} \\ f_{-} \\ f$

Amplifying the probability of basic Count-Min Sketch

Keep t over-estimates, $t = \log(1/\delta)$, $k = 2/\epsilon$ and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k, ϵ, δ) COUNT \leftarrow ZEROS $(t \times k)$ \triangleright sketch consists of t rows of k integers Pick t random functions $h_1, \ldots, h_t : [n] \mapsto [k]$ from a 2-universal family On input a_i for r = 1 to t do $\operatorname{COUNT}[r][h_r(a_i)] \leftarrow \operatorname{COUNT}[r][h_r(a_i)] + 1$ \triangleright increment COUNT[r] at index $h_r(a_i)$ On query *j* \triangleright query: $\mathbf{F}[i] = ?$ return $\min_{1 \le r \le t} \operatorname{COUNT}[r][h_r(j)]$

Amplifying the probability of basic Count-Min Sketch

IMDAD ULLAH KHAN (LUMS)

Amplifying the probability of basic Count-Min Sketch

1 $\tilde{f}_j \geq f_j$

For every r, other elements that hash to $h_r(j)$ contribute to \tilde{f}_j

$2 Pr \left[\tilde{f}_j \leq f_j + \epsilon \|F\|_1 \right] \geq 1 - \delta$

• X_{jr} : contribution of other elements to $Count[r][h_r(j)]$

•
$$\Pr\left[X_{jr} \geq \epsilon \|F\|_1\right] \leq 1/2$$
 for $k = 2/\epsilon$

• The event $\tilde{f}_j \ge f_j + \epsilon \|F\|_1$ is $\forall \ 1 \le r \le t$ $X_{jr} \ge \epsilon \|F\|_1$

•
$$\Pr\left[\forall r \ X_{jr} \geq \epsilon \|F\|_1 \right] \leq (1/2)^t$$

•
$$t = \log(1/\delta) \implies \Pr\left[\forall r X_{jr} \ge \epsilon \|F\|_1 \right] \le \left(\frac{1}{2}\right)^{\log 1/\delta} = \delta$$

Count-Min sketch is an (ε||F||₁, δ)-<u>additive</u> approximation algorithm
Space required is k ⋅ t integers = O(1/ε log(1/δ) log n) (plus constant)