
CS 315 Theory of Computation

Streaming Algorithms

Streaming Model of Computation

Streaming Algorithms and DFA

Stream: Motivation and Applications

Synopsis: Sliding Window, Histogram, Wavelets

Sampling from Stream: Reservoir Sampling

Linear Sketch

Count-Min Sketch

AMS Sketch
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Count-Min Sketch
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Count-min sketch

Count-min sketch stores frequencies of random groups of elements

▷ Cormode & Muthukrishnan (2004)

S = < a1, a2, a3, . . . , am > ai ∈ [n]

fj : frequency of j in S F = (f1, f2, . . . , fn)

Cannot store frequency of every element j ∈ [n]

Store total frequency of random groups in [n] (elements in hash buckets)

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai )]← count[h(ai )] + 1 ▷ increment count at index h(ai )

On query j ▷ query: F[j ] =?

return count[h(j)]
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Count-min sketch

Count-min sketch stores frequencies of random groups of elements

Algorithm : Count-Min Sketch (k, ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai )]← count[h(ai )] + 1 ▷ increment count at index h(ai )

On query j ▷ query: F[j ] =?
return count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :
1 2 3

1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

F :
1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1 Frequencies

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}
1 2 3 94 5 76 8

1 2 3
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Count-min sketch

Count-min sketch stores frequencies of random groups of elements

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )
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+

k = 2/ϵ

Large k means better estimate (many smaller groups) but more space

f̃j : estimate for fj – output of algorithm
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Count-min sketch

Count-min sketch stores frequencies of random groups of elements

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Quality on f̃j :
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )

. . .
1 2 3 n
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Bad caseNot so bad case

Sketchcount :

Imdad ullah Khan (LUMS) Streaming Model of Computation 6 / 1



Count-min sketch

Count-min sketch stores frequencies of random groups of elements

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Quality on f̃j :
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

count
+
fn

f3 f1

f4
+

f2

+

1 f̃j ≥ fj
Other elements that hash to h(j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1/2

f̃j = fj + Xj ▷ Xj : Excess in f̃j (error)

Xj =
∑

i∈[n]\j fi · 1h(i)=h(j) ▷ 1condition is indicator of condition

E (Xj) = E
( ∑

i∈[n]\j

fi · 1h(i)=h(j)

)
=

∑
i∈[n]\j

fi ·
1

k
≤ ∥F∥1 ·

ϵ

2

By Markov inequality we get the bound
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Count-min sketch

Amplifying the probability of basic Count-Min Sketch

Keep t over-estimates, t = log(1/δ), k = 2/ϵ and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(t × k) ▷ sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

On input ai

for r = 1 to t do

count[r ][hr (ai )]← count[r ][hr (ai )] + 1
▷ increment count[r ] at index hr (ai )

On query j ▷ query: F[j ] =?

return min
1≤r≤t

count[r ][hr (j)]
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Count-min sketch

Amplifying the probability of basic Count-Min Sketch

1

2
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2

3

h1(·)h2(·) S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :

1 2 3

0 + 1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

h1(·)

h2(·)

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1
True
Frequencies

1 + 5 + 6 3 + 3 + 10 + 2 + 2

1 2 3 . . . . . . k
count[ 1 ][ · ] +1
count[ 2 ][ · ] +1
count[ 3 ][ · ] +1

...
count[ t ][ · ] +1

ht(a)h1(a)

On input a

On query a mini count[ i ][hi(a)]
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Count-min sketch

Amplifying the probability of basic Count-Min Sketch

1 f̃j ≥ fj

For every r , other elements that hash to hr (j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1− δ

Xjr : contribution of other elements to Count[r ][hr (j)]

Pr
[
Xjr ≥ ϵ∥F∥1

]
≤ 1/2 for k = 2/ϵ

The event f̃j ≥ fj + ϵ∥F∥1 is ∀ 1 ≤ r ≤ t Xjr ≥ ϵ∥F∥1

Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤ (1/2)t

t = log(1/δ) =⇒ Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(
1
2

)log 1/δ
= δ

Count-Min sketch is an (ϵ∥F∥1, δ)-additive approximation algorithm

Space required is k · t integers = O(1/ϵ log(1/δ) log n) (plus constant)
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