STREAMING ALGORITHMS

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications
- Synopsis: Sliding Window, Histogram, Wavelets
- Sampling from Stream: Reservoir Sampling
- Linear Sketch
- Count-Min Sketch
- AMS Sketch

Imdad ullah Khan

Stream Sampling

Synopsis: Random Sample

- Keep a "representative" subset of the stream
- Approximately compute query answer from sample (with appropriate scaling etc.)

Sampling from an Array

Sample a random element from array A of length $n \triangleright A[i]$ with prob 1/n

- Generate a random number $r \in [0, n]$
- Return A[[r]]

 \triangleright r \leftarrow RAND() \times n

Weighted Sampling from an Array

Sample random element (by weight) from array $A \triangleright A[i]$ with prob. w_i/W • Generate a random number $r \in [0, \sum_{j=1}^{n} w_i] \quad \triangleright r \leftarrow \text{RAND}() \times W_n$ • Return A[i] if $W_{i-1} \leq r < W_i$

Sampling an element from a Stream: Reservoir Sampling

Sample a random element from the stream $S > a_i$ with prob. 1/m

If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)	
$R \leftarrow a_1$	$\triangleright R$ (reservoir) maintains the sample
for $i \ge 2$ do	
Pick a_i with probability $1/i$	
Replace with current element in R	

Prob. that a_i is in the sample R_m (m: stream length or query time)

$$= \underbrace{\Pr \text{ that } a_i \text{ was selected at time } i}_{1i} \times \underbrace{\Pr \text{ that } a_i \text{ survived in } R \text{ until time } m}_{j=i+1}$$

$$= \frac{1}{i} \times \underbrace{\frac{i}{i+1} \times \frac{i+1}{i+2} \times \frac{i+2}{i+3}}_{i+3} \times \ldots \times \frac{m-2}{m-1} \times \frac{m-1}{m} = \frac{1}{m}$$

Sampling k elements from a Stream: Reservoir Sampling

Sample k random elements from the stream S> a_i with prob. k/mAlgorithm : Reservoir Sampling (S, k) $R \leftarrow a_1, a_2, \dots, a_k$ > R (reservoir) maintains the samplefor $i \ge k + 1$ do> R (reservoir) maintains the samplePick a_i with probability k/iIf a_i is picked, replace with it a randomly chosen element in R

Prob. that a_i is in the sample R_m (m: stream length or query time)

 $= \underbrace{\Pr \text{ that } a_i \text{ was selected at time } i}_{k} \times \underbrace{\Pr \text{ that } a_i \text{ survived in } R \text{ untill time } m}_{j=i+1} \left(1 - \left(\frac{k}{j} \times \frac{1}{k}\right)\right)$ $= \frac{k}{j} \times \underbrace{\frac{i}{i+1}}_{i+1} \times \frac{\frac{i+1}{i+2}}{i+2} \times \frac{\frac{i+2}{i+3}}{i+3} \times \dots \times \frac{m-2}{m-1} \times \frac{m-1}{m} = \frac{k}{m}$