STREAMING ALGORITHMS

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications
- Synopsis: Sliding Window, Histogram, Wavelets
- Sampling from Stream: Reservoir Sampling
- Linear Sketch
- Count-Min Sketch
- AMS Sketch

Imdad ullah Khan

Since streaming algorithms have limited memory, exact algorithms are possible only for a few problems

We seek randomized approximate solutions

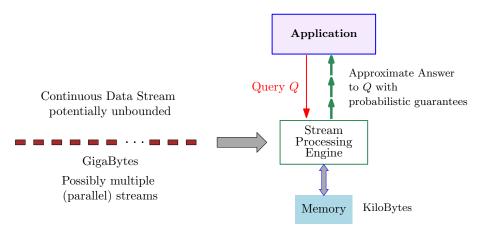
(ϵ, δ) -approximate algorithm

- Stream $\mathcal{S} := a_1, a_2, a_3, \dots, a_m$
- *f*(*S*) : Desired/Optimal output
- \mathcal{A} : an algorithm to approximate $f(\mathcal{S})$
- $\mathcal{A}(\mathcal{S})$: output of \mathcal{A} on \mathcal{S}

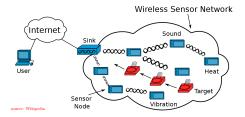
For $\epsilon>0, \;\; 0\leq\delta\leq 1$, $\; {\cal A}$ is an $(\epsilon,\delta)\mbox{-approximation algorithm if}$

$$Pr[|\mathcal{A}(\mathcal{S}) - f(\mathcal{S})| > \epsilon f(\mathcal{S})] \leq \delta$$

▷ m may be unknown


▷ (a function of stream)

Stream $S := a_1, a_2, a_3, \dots, a_m$ \triangleright *m* may be unknown Each $a_i \in [n]$ \triangleright e.g., primary keys of complex data objects Goal: Compute a function of the stream S


▷ e.g. mean, median, number of distinct elements, frequency moments,...

Subject to

- \blacksquare Single pass, read each element of ${\mathcal S}$ only once sequentially
- Per item processing time O(1)
- Use memory polynomial in $O(1/\epsilon, 1/\delta, \log n)$
- Return (ϵ, δ) -randomized approximate solution

Randomized Stream Computation Applications: Sensor Networks

- Sensor nodes collect unlimited amount of data
- Have very limited computation power and memory
- Limited battery power constrain communication of all collected data
 - 1 bit transmission consumes power \sim to executing 800 instructions¹

Streaming algorithm deployed onto nodes are ideally suited for drawing analytics from sensed data

IMDAD ULLAH KHAN (LUMS)

¹Madden et.al. (2002)

Randomized Stream Computation Applications: Network Monitoring

NetFlow: A Cisco tool for network administrators (performance metrics, security analysis, detection and forensics). For each flow it reports (logs)

- Network Interface
- Source/Destination IP Addresses
- IP Protocol

- Source/Destination port
- TCP Flags
- Total packets/bytes in flow

AT&T processes over 567 billion flow records per day² $ho \sim 15$ PBytes Detects and characterizes approximately 500 anomalies per day

²Fred Stinger (AT&T) FloCon (2017) Netflow Collection and Analysis ...

Application Area

- Traffic engineering
- Traffic monitoring
- Volume estimation & analysis
- Load balancing
- Efficient resource utilization
- (D)DOS attack detection
- SLA violation

Queries

- How many bytes sent b/w IP-1 and IP-2?
- How many IP addresses are active?
- Top 100 IP's by traffic volume
- Average duration of IP session?
- Median number of bytes in each IP session
- Find sessions that transmitted > 1k bytes
- Find sessions with duration > twice average
- List all IP's with a sudden spike in traffic
- List all IP involved in more than 1k sessions

Randomized Stream Computation Applications: Click Stream

Tracking and analysis of websites visits

- Stream of user clicks on websites (tracked via cookies)
- Find hot links, frequent IP's, click probability
- Enhanced customer experience & conversion rates
- Digital marketing Up-selling and cross-selling

Randomized Stream Computation Applications: Search Queries

- Discover trends and patterns
- Relevant keywords for website
- Estimate competition scores or difficulty
- Estimate keywords CPC (cost per click)

Energy consumption Analysis

- Electricity consumption data from AMI (Automatic Metering Interface)
- Find average hourly load, load surges, anamoly
- Short term load forecast (total or for individual consumer)
- Identify faults, drops, failures

Randomized Stream Computation Applications: Financial Time Series

- Time stamped real time (multiple) stock data
- Need near real time prediction
- Algorithmic Trading

Randomized Stream Computation Applications: Query Execution

Query Execution Plan can be optimized using a synopsis of the database Suppose we have data of n = 1M people in a database and the query SELECT * from Table WHERE $25 \le age \le 35$ and $54 \le weight \le 60$ \triangleright Runtime of brute force execution is 2n comparisons

Suppose we have the following synopsis of distribution of attributes

Age	Freq
0-10	7%
11 - 20	8%
21 - 30	10%
31 - 40	12%
41 - 50	13%
51 - 60	25%
61 - 70	20%
71+	5%

First filter on Age, then on	weight
------------------------------	--------

Runtime: 1.22n

 $\begin{tabular}{|c|c|c|c|c|} \hline Weight & Freq. \\ \hline 0-20 & 20\% \\ \hline 21-40 & 25\% \\ \hline 41-60 & 10\% \\ \hline 61-80 & 15\% \\ \hline 81+ & 30\% \\ \hline \end{tabular}$

First filter on Weight, then on age

Runtime: 1.1n