STREAMING ALGORITHMS

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications
- Synopsis: Sliding Window, Histogram, Wavelets
- Sampling from Stream: Reservoir Sampling
- Linear Sketch
- Count-Min Sketch
- AMS Sketch

Imdad ullah Khan

DFA and Streaming Algorithms

Streaming Algorithms can simulate any DFA using logarithmic bits

If L is a language recognized by a DFA D on at most m states, then L is recognized by a streaming algorithm using at most log m bits of space

We give a streaming algorithm that simulates $D = (Q, \Sigma, q_0, \delta, F)$

AlgorithmStreaming Algorithm to simulate D = on string $w = w_1 w_2 \dots w_n$ $q \leftarrow q_0$ $\triangleright |Q| = m \implies q$ is a log m-bit integerfor $i = 1 \rightarrow n$ do $q \leftarrow \delta(q, w_i)$ $\triangleright \delta$ function can be provided as a lookup tableif $q \in F$ then \triangleright Search for q in FAcceptelseReject

Runtime of the algorithm depends on the data structure of δ and F but space consumed is one integer (log *m* bits)

Can DFA simulate Streaming Algorithms?

Clearly, No! ∃ non-regular languages recognizable by streaming algorithms

However, DFA's are not totally powerless!

For a language $L\subseteq \Sigma^*$ and an integer $n\geq 0$, let

•
$$L_n = \{ w \in L : |w| = n \}$$

• $L_{\leq n} = \{ w \in L : |w| \leq n \}$

 $L = \{0, 10, 100, 110, 0110, 0100, 1010, 1000, 1110\}$

 $L_1 = \{0\}$ $L_2 = \{10\}$ $L_3 = \{100, 110\}$ $L_{\leq 1} = \{0\}$ $L_{\leq 2} = \{0, 10\}$ $L_{\leq 3} = \{0, 10, 100, 110\}$

Can DFA simulate Streaming Algorithms?

Clearly, No! ∃ non-regular languages recognizable by streaming algorithms However, DFA's are not totally powerless!

Theorem: If $L \subseteq \Sigma^*$ is recognized by a streaming algorithm A using f(n) bits of space on any string of length at most n. Then for every n there is a DFA D with at most $2^{f(n)}$ states, with $L(D)_{\leq n} = L_{\leq n}$

We construct a DFA $D = (Q, \Sigma, q_0, \delta, F)$ from A

- Q: all possible $2^{f(n)}$ values of A's memory
- Σ : alphabet of A or L
- q_0 : initial value of A's memory
- δ : mimics how A's memory changes on σ
- *F* : states corresponding to *A*'s memory values where *A* accepts at the end of string

DFA simulating Streaming algorithm to recognize 1-DOMINANT ≤ 2

Algorithm Streaming Algorithm A for 1-DOMINANT $(w = w_1 w_2 \dots w_n)$ $C \leftarrow 0$ $x \leftarrow 0$ $\triangleright C$ is int, x is a bit for $i = 1 \rightarrow n$ do if C = 0 then $C \leftarrow 1$ $x \leftarrow w_i$ else if $C \neq 0$ AND $x = w_i$ then $C \leftarrow C + 1$ else $C \leftarrow C - 1$ if C > 0 AND x = 1 then Accept else Reject

Memory values of A States of DFA

This DFA agrees with A on strings in L of length ≤ 2