CS 315 Theory of Computation

Streaming Algorithms

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications

■ Synopsis: Sliding Window, Histogram, Wavelets
■ Sampling from Stream: Reservoir Sampling
■ Linear Sketch
■ Count-Min Sketch
■ AMS Sketch

Imdad ullah Khan

The Streaming Model of Computation

Models of Computation

More detailed view of model of the "computers" we studied:

Finite Automaton

Pushdown Automaton

Stream Computation Model: Streaming Algorithm

A streaming algorithm has three components
Algorithm Streaming algorithm: Input $\mathcal{S}=\sigma_{1} \sigma_{2} \sigma_{3} \cdots \in \Sigma^{*}$
INITIALIZE (vars) $\triangleright O\left((\log n)^{c}\right)$-bits
while σ : (next symbol in \mathcal{S}) is not end of stream do
Pseudocode using σ and vars
$\triangleright O(1)$-time
Pseudocode for Accept/Reject or Output based on vars

Differences in DFA and Streaming Algorithms

Finite Automaton

Streaming algorithms have poly-logarithmic working memory
\triangleright memory increases with the size of inputs (though very slowly)
Streaming algorithms can recognize (some) non-regular language
Can output more than a bit e.g. can flush-out its working memory
\triangleright it can be used for non-decision problems
In some versions streaming algorithms can do multiple passes on input
Can be randomized - output is correct up to error parameters $0<\epsilon, \delta<1$
\triangleright working memory is polynomial in $1 / \epsilon, 1 / \delta, \log n$

Differences in DFA and Streaming Algorithms

BALANCED $=\{w \mid w$ has equal number of 0s and 1s $\}$ is not regular
\triangleright Proved it using the pumping lemma

No DFA recognizes BALANCED

Streaming Algorithm for Balanced problem

Algorithm Streaming Algorithm for BALANCED $\left(w=w_{1} w_{2} \ldots w_{n}\right)$

$$
\begin{aligned}
& C_{0} \leftarrow 0 \\
& C_{1} \leftarrow 0 \\
& \text { for } i=1 \rightarrow n \text { do } \\
& \text { if } w_{i}=1 \text { then } \\
& \quad C_{1} \leftarrow C_{1}+1 \\
& \text { else } \\
& \quad C_{0} \leftarrow C_{0}+1 \\
& \text { if } C_{0}=C_{1} \text { then } \\
& \text { Accept } \\
& \text { else } \\
& \text { Reject }
\end{aligned}
$$

This streaming algorithm recognizes BALANCED with $2 \log n$ bits

DFA vs Streaming Algorithms

$L_{1}=1$-Dominant $=\{w \mid w$ has more 1 s than 0 s$\}$
Let $\quad L_{b}=$ BALANCED
Knowing L_{b} is not regular, doesn't imply L_{1} is not regular
$L_{0}=0$-dominant $=\{w \mid w$ has more 0s than 1 s$\}$

$$
L_{b}=\overline{L_{1}} \cap \overline{L_{0}}=\overline{L_{1} \cup L_{2}}
$$

$\triangleright L_{1}$ is regular $\Longrightarrow L_{0}$ is regular (flip 0's and 1 's in the supposed DFA)
$\rightarrow L_{1} \cup L_{0}$ is regular $\rightarrow \overline{L_{1} \cup L_{2}}$ is regular $\rightarrow \overline{L_{1}}$ is regular $\rightarrow L_{1}$ is regular
Thus, no DFA recognizes 1-DOMINANT, while the following streaming algorithm recognizes it with $2 \log n$ bits

Can we do it in fewer bits?

Streaming Algorithm for 1-DOMINANT problem
Algorithm Streaming Algorithm for 1-DOMinant($w=w_{1} w_{2} \ldots w_{n}$)
$C \leftarrow 0$
$x \leftarrow 0$
$\triangleright C$ is an integer, x is a bit
if $C=0$ then
$C \leftarrow 1$ $x \leftarrow w_{i}$
else if $C \neq 0$ and $x=w_{i}$ then

$$
C \leftarrow C+1
$$

else

$$
C \leftarrow C-1
$$

if $C>0$ AND $x=1$ then

Accept

else

Reject

x records the bit currently in majority
C records the excess frequency of x over \bar{x}

PDA vs Streaming Algorithms

BALANCED- $3=\left\{a^{m} b^{m} c^{m} \mid m \geq 0\right\}$ cannot be recognized by a PDA
\triangleright PDA cannot match number of a 's, b 's, and c 's using one stack
Algorithm Streaming Algorithm for BALANCED-3($w=w_{1} w_{2} \ldots w_{n}$)

```
\(C_{a} \leftarrow 0 \quad C_{b} \leftarrow 0 \quad C_{c} \leftarrow 0 \quad\) phase \(\leftarrow 0 \quad \triangleright\) phase: 0 for a's, 1 for b's, 2 for c's
for \(i=1 \rightarrow n\) do
    if phase \(=0\) then
            if \(w_{i}=a\) then \(\quad C_{a} \leftarrow C_{a}+1\)
            else if \(w_{i}=b\) then \(\quad C_{b} \leftarrow C_{b}+1 \quad\) phase \(\leftarrow 2\)
            else Reject
        else if phase \(=1\) then
            if \(w_{i}=b\) then \(\quad C_{b} \leftarrow C_{b}+1\)
            else if \(w_{i}=c\) then \(\quad C_{c} \leftarrow C_{c}+1 \quad\) phase \(\leftarrow 3\)
            else Reject
        else
            if \(w_{i}=c\) then \(\quad C_{c} \leftarrow C_{c}+1\)
            else Reject
    if \(C_{a}=C_{b}=C_{c}\) then Accept
    else Reject
```

