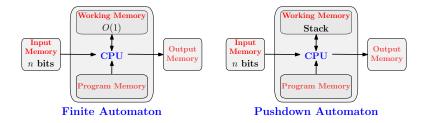
STREAMING ALGORITHMS

- Streaming Model of Computation
- Streaming Algorithms and DFA
- Stream: Motivation and Applications
- Synopsis: Sliding Window, Histogram, Wavelets
- Sampling from Stream: Reservoir Sampling
- Linear Sketch
- Count-Min Sketch
- AMS Sketch

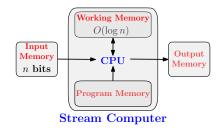
Imdad ullah Khan

The Streaming Model of Computation

More detailed view of model of the "computers" we studied:



Stream Computation Model: Streaming Algorithm



A streaming algorithm has three components

AlgorithmStreaming algorithm: Input $S = \sigma_1 \sigma_2 \sigma_3 \cdots \in \Sigma^*$ INITIALIZE(vars) $\triangleright O(((\log n)^c)$ -bitswhile σ : (next symbol in S) is not end of stream do $\triangleright O((1)$ -timePseudocode using σ and vars $\triangleright O(1)$ -timePseudocode for Accept/Reject or Output based on vars

Differences in DFA and Streaming Algorithms

Streaming algorithms have poly-logarithmic working memory
▷ memory increases with the size of inputs (though very slowly)
Streaming algorithms can recognize (some) non-regular language
Can output more than a bit e.g. can flush-out its working memory
▷ it can be used for non-decision problems

In some versions streaming algorithms can do multiple passes on input Can be randomized - output is correct up to error parameters $0 < \epsilon, \delta < 1$ \triangleright working memory is polynomial in $1/\epsilon, 1/\delta, \log n$

Differences in DFA and Streaming Algorithms

 $BALANCED = \{w | w \text{ has equal number of 0s and 1s} \} \text{ is not regular}$ $\triangleright \text{ Proved it using the pumping lemma}$

No DFA recognizes BALANCED

Streaming Algorithm for BALANCED problem

Algorithm Streaming Algorithm for BALANCED($w = w_1 w_2 \dots w_n$)

```
C_0 \leftarrow 0
C_1 \leftarrow 0
for i = 1 \rightarrow n do
    if w_i = 1 then
          C_1 \leftarrow C_1 + 1
    else
          C_0 \leftarrow C_0 + 1
if C_0 = C_1 then
     Accept
else
     Reject
```

This streaming algorithm recognizes BALANCED with $2 \log n$ bits

DFA vs Streaming Algorithms

 $L_1 = 1$ -DOMINANT = {w | w has more 1s than 0s}

Let $L_b = BALANCED$

Knowing L_b is not regular, doesn't imply L_1 is not regular $\triangleright L_1 \neq \overline{L_b}$ $L_0 = 0$ -DOMINANT = {w | w has more 0s than 1s}

$$L_b = \overline{L_1} \cap \overline{L_0} = \overline{L_1 \cup L_2}$$

 \triangleright L_1 is regular \implies L_0 is regular (flip 0's and 1's in the supposed DFA)

 $A \to L_1 \cup L_0$ is regular $A \to \overline{L_1 \cup L_2}$ is regular $A \to \overline{L_1}$ is regular $A \to L_1$ is regular

Thus, no DFA recognizes 1-DOMINANT, while the following streaming algorithm recognizes it with $2 \log n$ bits

```
Can we do it in fewer bits?
```

Streaming Algorithm for 1-DOMINANT problem

Algorithm Streaming Algorithm for 1-DOMINANT $(w = w_1 w_2 \dots w_n)$

```
C \leftarrow 0
x \leftarrow 0
for i = 1 \rightarrow n do
    if C = 0 then
         C \leftarrow 1
         x \leftarrow w_i
    else if C \neq 0 AND x = w_i then
         C \leftarrow C + 1
    else
         C \leftarrow C - 1
if C > 0 AND x = 1 then
    Accept
else
    Reject
```

 \triangleright *C* is an integer, *x* is a bit

x records the bit currently in majority

C records the excess frequency of x over \overline{x}

IMDAD ULLAH KHAN (LUMS)

PDA vs Streaming Algorithms

BALANCED-3 = $\{a^m b^m c^m | m \ge 0\}$ cannot be recognized by a PDA

 \triangleright PDA cannot match number of *a*'s, *b*'s, and *c*'s using one stack

Algorithm Streaming Algorithm for BALANCED-3($w = w_1 w_2 \dots w_n$)

 $C_a \leftarrow 0$ $C_b \leftarrow 0$ $C_c \leftarrow 0$ phase $\leftarrow 0$ \triangleright phase: 0 for a's, 1 for b's, 2 for c's for $i = 1 \rightarrow n$ do if phase = 0 then if $w_i = a$ then $C_a \leftarrow C_s + 1$ else if $w_i = b$ then $C_b \leftarrow C_b + 1$ phase $\leftarrow 2$ else Reject else if phase = 1 then if $w_i = b$ then $C_b \leftarrow C_b + 1$ else if $w_i = c$ then $C_c \leftarrow C_c + 1$ phase $\leftarrow 3$ else Reject else if $w_i = c$ then $C_c \leftarrow C_c + 1$ else Reject if $C_a = C_b = C_c$ then Accept else Reject