Theory of Computation

Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding

■ Language
■ Versions of Computational Problems

- Decision Problems as Language Recognition

■ Models of Computation - CPU + Memory

Imdad ullah Khan

Computational Problems as Languages

$\underline{\text { Decision Problem }=\text { Language Recognition Problem }}$

A decision problem is characterized by three things
■ I: set of (valid) input instances $\subseteq\{0,1\}^{*}$

- S : solution space, $\{\mathbf{Y e s}, \mathbf{N o}\}=\{0,1\}$

■ $f: \mathcal{I} \rightarrow\{0,1\}$: The computational question or function

The language recognition problem is characterized by three things

- $\mathcal{U}:$ Universal Set $\subseteq\{0,1\}^{*}$

■ S: Membership Decision, $\{$ Yes, No $\}=\{0,1\}$
■ $f: \mathcal{I} \rightarrow\{0,1\}:$ Membership Predicate

$\underline{\text { Decision Problem }=\text { Language Recognition Problem }}$

There is a one-to-one correspondence between decision problems and language recognition problems

Every language L over Σ uniquely corresponds to a decision problem $f: \Sigma^{*} \mapsto\{$ Yes, No $\}$

$$
L=\{w: f(w)=\text { Yes }\}
$$

A decision problem is the task of recognizing whether a given string (instance) is in a language

Example of computational problem as Language

■ Parity: Does a given string in $\{a, b\}^{*}$ contain an even number of $a^{\prime} s$

$$
L_{1}=\{w: w \text { has an even number of } a ' s\}
$$

- PRIME: Is a given $x \in \mathbb{N}$ (in binary representation) a prime number

$$
L_{2}=\{x: x \text { is a prime number }\}
$$

■ Halting Problem: Does a given C program ever halt, $\quad \Sigma=$ ASCII,

$$
L_{3}=\{X . c p p: X \text { halts }\}
$$

- $L_{2}=\{2,3,5,7,11, \ldots\}$

■ $L_{2}=\{11,111,11111,1111111, \ldots\}$
■ $L_{2}=\{10,11,101,111,1011, \ldots\}$
The correct answer depends on Σ

Example of computational problem as Language

$$
\Sigma=\{a, b\}
$$

$\overline{\text { Algorithm A Language Recognizer }}$

What language does this program accept/recognize?
$1\left\{w \in\{a, b\}^{*}:|w| \leq 4\right\}$
$2\left\{w \in\{a, b\}^{*}:|w|=4\right\}$
3 3 $\left\{w \in\{a, b\}^{*}:|w| \geq 4\right\}$
$4\left\{w \in\{a, b\}^{*}\right.$:
w has at least 4 a's $\}$
$5\left\{w \in\{a, b\}^{*}\right.$: w has at most 4 a's $\}$
6 $\left\{w \in\{a, b\}^{*}\right.$: w has at exactly 4 a's $\}$

