Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding
- Language
- Versions of Computational Problems
- Decision Problems as Language Recognition
- Models of Computation CPU + Memory

Imdad ullah Khan

Computational Problems as Languages

Decision Problem = Language Recognition Problem

A decision problem is characterized by three things

- \mathcal{I} : set of (valid) input instances $\subseteq \{0,1\}^*$
- S: solution space, $\{$ Yes, No $\} = \{0, 1\}$
- $f: \mathcal{I} \to \{0, 1\}$: The computational question or function

The language recognition problem is characterized by three things

- \mathcal{U} : Universal Set $\subseteq \{0,1\}^*$
- **S**: Membership Decision, $\{$ **Yes**, **No** $\} = \{0, 1\}$
- $f: \mathcal{I} \to \{0, 1\}$: Membership Predicate

Decision Problem = Language Recognition Problem

There is a one-to-one correspondence between decision problems and language recognition problems

Every language L over Σ uniquely corresponds to a decision problem $f : \Sigma^* \mapsto \{ \mathbf{Yes}, \mathbf{No} \}$

$$L = \{w : f(w) = \mathbf{Yes}\}$$

A decision problem is the task of recognizing whether a given string (instance) is in a language $% \left({\left[{n_{1}} \right]_{n \in \mathbb{N}}} \right)$

Example of computational problem as Language

Parity: Does a given string in $\{a, b\}^*$ contain an even number of a's

 $L_1 = \{w : w \text{ has an even number of } a's\}$

PRIME: Is a given $x \in \mathbb{N}$ (in binary representation) a prime number

 $L_2 = \{x : x \text{ is a prime number}\}$

• Halting Problem: Does a given C program ever halt, $\Sigma = ASCII$,

$$L_3 = \{X.cpp : X \text{ halts}\}$$

• $L_2 = \{2, 3, 5, 7, 11, \ldots\}$

•
$$L_2 = \{11, 111, 11111, 1111111, \ldots\}$$

•
$$L_2 = \{10, 11, 101, 111, 1011, \ldots\}$$

The correct answer depends on $\boldsymbol{\Sigma}$

Example of computational problem as Language

 $\Sigma = \{a, b\}$

AlgorithmA Language Recognizer $w \leftarrow x_1 x_2 x_3 \dots x_n \quad \triangleright \ x_i \in \{a, b\}$ $count \leftarrow 0$ for $i = 1 \rightarrow n$ doif $x_i = a$ then $count \leftarrow count + 1$ if $count \leq 4$ thenAcceptelseReject

What language does this program accept/recognize?

1
$$\{w \in \{a, b\}^* : |w| \le 4\}$$

2 {
$$w \in \{a, b\}^*$$
 : $|w| = 4$ }

3 {
$$w \in \{a, b\}^*$$
 : $|w| \ge 4$ }

4
$$\{w \in \{a, b\}^* : w \text{ has at least 4 } a$$
's $\}$

5
$$\{w \in \{a, b\}^* : w \text{ has at most 4 } a$$
's $\}$

$$\{ w \in \{a, b\}^* : \\ w \text{ has at exactly 4 } a's \}$$