Theory of Computation

Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding

■ Language

- Versions of Computational Problems

■ Decision Problems as Language Recognition
■ Models of Computation - CPU + Memory

Imdad ullah Khan

Versions of Computational Problems

What is a computational problem?

A computational problem is characterized by three things

- I: set of (valid) input instances

■ S: solution space, set of possible solutions for instances in \mathcal{I}
■ $f: \mathcal{I} \rightarrow S$: The computational question or function

		Input	Output	$\xrightarrow{\text { Input }}$ SORT	$\mathrm{T} \xrightarrow{\text { Output }}$
Instance $\in \mathcal{I}$	Solution $\in S$	Instance $\in \mathcal{I}$	Solution $\in S$	Instance $\in \mathcal{I}$	Solution $\in S$
0	No	0,0	0	[0,3,2,9,5]	[0,2,3,5,9]
1	No	0,1	0	[9,8, $6,4,3,1]$	[1,3,4,6,8,9]
${ }_{2}$	Yes	1,2	2	[1, 2, .3, 8, 7.4]	[1,2, .3, 7.4, 8]
	Yes	2, 3	${ }^{6}$	${ }_{[-1,2,9,7,6]}$	${ }_{[-1,2,6,7,9]}$
4	No	2, 7	14	[4, 5, 6, 7, 8]	$[4,5,6,7,8]$
6	No	4,6	24	[-2.3, -5.9, -.4.3]	[-5.9, -.4.3, -2.3]
7	Yes	9,7	63	[7, -3.6, 9, .8, .5]	$[-3.6, .5, .8,7,9]$

What is a computational problem?

A computational problem is characterized by three things
■ I: set of (valid) input instances
■ S : solution space, set of possible solutions for instances in \mathcal{I}
■ $f: \mathcal{I} \rightarrow S$: The computational question or function

Next we talk about the output

Independent Set in Graphs

An independent set in G is subset of vertices no two of which are adjacent

A graph on 12 vertices

An independent set of size 3

An independent set of size 4

An independent set of size 5 (max)

The Ind-SET (G, k) problem: Is there an independent set of size k in G ?

Independent Set Applications

Sites Selection Problem
Suppose n potential sites are identified for opening k restaurants
Some pairs of places shouldn't have the franchises at both of them
\triangleright too close to each other, competitions, or operational constraints

1 Make a graph G with vertices as sites and edges as pairwise conflicts
2 Selecting k sites becomes finding a k-independent set in G

Independent Set Applications

The SNP (Single Nucleotide Polymorphism) Assembly Problem
In computational biology (biochemistry) given a set of sequences we want to resolve inter-sequential conflicts by excluding some sequences
\triangleright conflict between sequences is due to their biochemical properties
The goal is to select a large number of conflict free sequences

1 Make a graph with vertices representing sequences and edges representing conflicts

2 Find a large independent set in this graph

Independent Set Applications

Diversifying Investment Portfolio

- Different stocks in a market
- $P_{i}(t)$ is price for stock i at time t

■ $R_{i}(t)=\log \frac{P_{i}(t)}{P_{i}(t-1)}$, return or trading volume of stock i at time t
■ Make each stock a node and two stocks have edges if correlation of their returns is $\geq \theta$ for threshold $-1 \leq \theta \leq 1$

- θ is set depending on potential risk (degree of diversification)
- Two adjacent vertices in $G_{\theta=.9}$ represent high risk investment pair

Set $\theta<-0.5$: an independent set in G_{θ} represents a portfolio with "small" risk (diverse set of investments)

Independent Set Applications

Shannon Capacity of a graph
Sending a message from an alphabet through a noisy channel


```
!ほって己ぎき
ひじびジ
# - &&&b
, <<<<<<<<
```

Because of noise some characters can be confused How many 1 length strings can be sent without confusion？
－Make each letter a node and make edges iff the corresponding letters can be confused（depends on the SNR of channel）
■ Max number of messages is the size of max independent set
How many k－length strings can be sent on this channel？
－Size of max independent set in G^{k}（strong product of graphs）

(Directed) Hamiltonian Cycle and Path

A Hamiltonian cycle (path) in graph is a cycle/path containing all vertices

Hamiltonian cycle in G

No Hamiltonian cycle in G Hamiltonian path in blue

No Hamiltonian path in G So no hamiltonian cycle

HAM-CyCle (G) problem: Does G have a Hamiltonian cycle?

Ham-Path (G) problem: Does G have a Hamiltonian path?

DIR-HAM-CYCLE (G), and DIR-HAM-PATH (G) are defined analogously

Hamiltonian Cycle and Path Applications

Is there a sequence of moves that takes the knight to each square on an 8×8 chessboard exactly once, returning to the original square?

For 8×8 Abu Bakr Muhammad b. Yahya al-Suli found one in 9th century

1 For $n \times n$ chessboard define a vertex for each position and connect vertex $v_{i j}$ to vertex $v_{k l}$ if there is a legal move between the (i, j) th position to the $(k, /)$ th position on the board

2 Find a Hamiltonian cycle in the graph

Hamiltonian Cycle and Path Applications

Route for School Bus
School bus should visit each house exactly once to save fuel and time
1 Houses considered nodes and streets as edges
2 Find a Hamiltonian cycle

Hamiltonian Cycle and Path Applications

Genome Mapping
Combine many tiny fragments of genetic codes (called "reads"), into one genomic sequence

1 Consider each read a node in a graph
2 Overlap (end of one read matches the start of another) is an edge
3 Find a Hamiltonian cycle in this graph, a mapping of genome

The Satisfiability Problem: SAT

- Given n Boolean variables x_{1}, \ldots, x_{n}
- A literal is a variable appearing in some formula as x_{i} or $\overline{x_{i}}$
- A clause is an or of one or more literals
- A CNF formula (conjunctive normal form) is a Boolean expression that is AND of one or more clauses
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)
$1 f_{1}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$
- f_{1} is satisfiable (the assignment is $x_{1}=1, x_{2}=1, x_{3}=1$)
- $x_{1}=1, x_{2}=0, x_{3}=0$ is also a satisfying assignment
$2 f_{2}=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right)$ is not satisfiable

The $\operatorname{SAT}(f)$ problem: Is there a satisfying assignment for the formula f ?

The Satisfiability Problem : 3-SAT

- Given n Boolean variables x_{1}, \ldots, x_{n}
- Each can take a value of $0 / 1$ (true/false)
- A literal is a variable appearing in some formula as x_{i} or \bar{x}_{i}
- A clause of size 3 is an or of three literals
- A 3-CNF formula is AND of one or more clauses of size ≤ 3
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)

The 3 -SAT (f) problem: Is there a satisfying assignment for f ?

The Satisfiability Problem :Applications

Many applications in hardware/software verification, Also in planning, partitioning, scheduling, constrained satisfaction problem

Many hard problems can be stated in terms of SAT
When can the meeting take place if at all, with the following constraints?

- John can only meet either on Monday, Wednesday or Thursday
- Catherine cannot meet on Wednesday
- Anne cannot meet on Friday
- Peter cannot meet neither on Tuesday nor on Thursday

Encode them into the following Boolean formula:

$$
(\text { Mon } \vee \text { Wed } \vee \text { Thu }) \wedge(\neg \text { Wed }) \wedge(\neg \text { Fri }) \wedge(\neg \text { Tue } \vee \neg \text { Thu })
$$

The meeting must take place on Monday

Versions of Computational Problems

Decision Problem
 - Sometimes called decision version of a problem

Characterized by their algorithms whose output is either Yes or No In other words the answer on an instance is either Yes or No

- Decision versions of $\operatorname{SAT}(f)$ asks if the given formula f is satisfiable
- output is Yes if there is an assignment to variables that makes f true
- Decision version of $\operatorname{IND}-\operatorname{SET}(G, k)$ asks if there is an independent set of size k in G
- output is Yes if G has an independent set of size $\geq k$, else No
- Decision version of Hamiltonian-Cycle(G)
- Output is a Yes if G has a Hamiltonian cycle, else No

Versions of Computational Problems

Search Problem
\triangleright Sometimes called search version of a problem
Ask for a structure satisfying certain property or Not-Found= NF flag
The expected answer on an instance is not (necessarily) Yes or No

■ Search versions of SAT, 3-SAT ask for a satisfying assignment

- output is n-bit string (specifying ordered values for variables) or NF
- Search version of $\operatorname{IND}-\operatorname{SET}(G, k)$ asks for an ind. set of size k in G
- output is a subset of vertices or NF
- Search version of Ham-Cycle(G)
- output is a Hamiltonian cycle in G or NF

Versions of Computational Problems

Optimization Problem \triangleright also called optimization version of problem
These problems ask for a structure that satisfy certain property (feasibility) and no other feasible structure have better value

These are search problem but searching for an optimal structure
\triangleright There is an objective/value function over solution space

- Optimization versions of SAT, 3-SAT ask for an assignment satisfying the most number of clauses
- output is n-bit string (specifying ordered values for variables)
- Optimization version of $\operatorname{IND-SET}(G)$ asks for largest indep. set in G
- What could be optimization version of Ham-CyCle(G) ?
$\triangleright \operatorname{TSP}(G)$ asks for a minimum cost TSP tour

Versions of Computational Problems

- Decision Problem: answer is Yes/No

■ Search Problem: answer is a feasible structure of certain value or NF

- Optimization Problem: answer is a feasible structure of optimal value

In some cases there is no reasonable notion of optimization version e.g. Hamiltonian cycle

