Theory of Computation

Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding
- Language
- Versions of Computational Problems
- Decision Problems as Language Recognition
- Models of Computation - CPU + Memory

Imdad ullah Khan

Languages

Language

A language is a subset of strings from some alphabet
A Language on $\Sigma: A$ set $L \subseteq \Sigma^{*}$

- $L_{1}: \emptyset$
\triangleright Empty language
- $L_{2}: \Sigma^{*}$
\triangleright All strings
- $L_{3}: \Sigma^{n}=\left\{x \in \Sigma^{*}:|x|=n\right\}$
\triangleright All strings of length n
■ $L_{4}: \Sigma^{n}=\left\{x \in \Sigma^{*}:|x| \leq 4\right\}$
\triangleright All strings of length at most 4
Let $\Sigma=\{0,1\}$.
1 List all the above languages
2 Find the number of strings in these languages
Repeat the above two tasks with $\Sigma=\{a, b, c\}$

Languages: Examples

A language is a subset of strings from some alphabet

- $L_{5} \subseteq\{a, b\}^{*}$ of strings with an equal number of a 's and b 's
- $L_{6} \subseteq\{a, b\}^{*}$ of strings that start with 0 or more a's and are followed by an equal number of b 's

$$
L_{6}=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

- $L_{7} \subseteq\{a, b\}^{*}$ of strings containing "abaa"

$$
L_{7}=\left\{x y z: x, z \in\{a, b\}^{*}, y=a b a a\right\}
$$

- $L_{8} \subseteq\{a, b\}^{*}$ of strings containing at least two a's

$$
L_{8}=\left\{x a y a z: x, y, z \in\{a, b\}^{*}\right\}
$$

Operations on Languages

We can make new languages from old languages
Since languages are sets, we can apply set operations to form new languages

■ $\overline{L_{i}}=\left\{w \in \Sigma^{*}: w \notin L_{i}\right\}$

- $L_{i} \cup L_{j}=\left\{w \in \Sigma^{*}: w \in L_{i} \vee w \in L_{j}\right\}$
$\square L_{i} \cap L_{j}=\left\{w \in \Sigma^{*}: w \in L_{i} \wedge w \in L_{j}\right\}$

Let $\left|L_{1}\right|=n_{1} \quad$ and $\quad\left|L_{2}\right|=n_{2}$
What can we say about the cardinalities of the above languages in terms of n_{1} and/or n_{2} ?

Operations on Languages

We can make new languages from old languages

- $L_{1}=$ set of strings $w \in\{a, b\}^{*}$ that have an equal number of a 's and b 's and have length at least 5
- $L_{2}=$ set of strings $w \in\{a, b\}^{*}$ that have an equal number of $a^{\prime} s$ and b's

■ L_{3} set of strings $w \in\{a, b\}^{*}$ that have length at most 4

$$
L_{1}=L_{2} \cap \overline{L_{3}}
$$

Operations on Languages

We can make new languages from old languages

Since languages are sets of strings, we can make new sets by performing string operations on elements of a language

Reverse $L^{R}=\left\{w^{R}: w \in L\right\}$
$L=\{\epsilon, a, a b, a a b, a a a b, a a a a b\} \Longrightarrow L^{R}=\{\epsilon, a, b a a, b a a a, b a a a a\}$

What is $\left|L^{R}\right|$ in terms of $|L|$?

Operations on Languages

We can make new languages from old languages
Since languages are sets of strings, we can make new sets by performing string operations on elements of a language

Concatenation $L_{1} \circ L_{2}=\left\{w_{1} w_{2}: w_{1} \in L_{1}, w_{2} \in L_{2}\right\}$
$L_{1}=\{\epsilon, a, a b, a a b\} \quad L_{2}=\{b, b a\}$
$\Longrightarrow L_{1} \circ L_{2}=\{b, b a, a b, a b a, a b b, a b b a, a a b b, a a b b a\}$
Notice

$$
\left|L_{1} \circ L_{2}\right| \leq\left|L_{1}\right| *\left|L_{2}\right|
$$

In what cases will we get $\left|L_{1} \circ L_{2}\right|<\left|L_{1}\right| *\left|L_{2}\right|$?

Languages: Examples

- ϵ : The empty string
- $\emptyset:$ The empty language
- $\{\epsilon\}$: the language containing the empty string

■ $\{\emptyset\}$: A class of languages, (set containing the empty language)

