Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding
- Language
- Versions of Computational Problems
- Decision Problems as Language Recognition
- Models of Computation CPU + Memory

Imdad ullah Khan

Binary Encoding

What is computation?

Computation: Processing information by applying a finite set of rules

How do we represent/encode input and output?

An encoding/representation scheme for a set of objects O is a one-to-one function $E:O\mapsto\{0,1\}^*$

Encoding should be one-to-one for decoding

$$D: range(E) \mapsto O \quad s.t \quad D(E(x)) = x \quad \forall x \in O$$

We give simple binary representation for common types of data

Can we represent "everything" with $\{0,1\}^*$?

"everything" ?

Binary Encoding of Data

Can we represent $\mathbb N$ with $\{0,1\}^*$?

Binary Encoding of Data

Does Σ matter?

0	0	0			
-		0	0		
1	1	1	1		
2	10	2	2		
3	11	3	3		
4	100	4	4		
5	101	5	5		
6	110	6	6		
7	111	7	7		
8	1000	10	8		
9	1001	11	9		
10	1010	12	Α		
11	1011	13	В		
12	1100	14	C		
13	1101	15	D		
14	1110	16	E		
15	1111	17	F		
16	10000	20	10		

Binary Encoding of Data

Does $|\Sigma|$ matter?

Decimal	Binary	Unary		
0	0	ϵ		
1	1	1		
2	10	11		
3	11	111		
4	100	1111		
5	101	11111		
6	110	111111		
7	111	1111111		
8	1000	11111111		
9	1001	111111111		
10	1010	1111111111		
11	1011	11111111111		
12	1100	111111111111		
13	1101	11111111111111		
14	1110	1111111111111111		
15	1111	111111111111111111		
16	10000	111111111111111111		

Can we represent $\mathbb Z$ with $\{0,1\}^*?$

Sign-Magnitude

Can we represent $\mathbb{N}\times\mathbb{N}$ with $\{0,1\}^*?$

Why? 2-d numbers, rational numbers, cell/pixel address of matrix/image

We have $E : \mathbb{N} \mapsto \{0,1\}^*$, we need encoding of pairs of (natural) numbers

Can we encode $x, y \in \mathbb{N} \times \mathbb{N}$ as E(x)E(y)?

▷ concatenation

Fixed Length Code

Fixed number of bits for each object (symbox)

- e.g. ASCII (7 bits) and Unicode (UTF-8, UTF-16)
- ASCII can represent $2^7 = 128$ symbols

Variable Length Code

Variable number of bits for each object

- Can use fewer bits for more frequent symbols
- e.g. Huffman code
- Difficult to find, needs compression scheme

Fixed versus Variable length codes

Characters	a	b	с	d
Fixed-Length Code	00	01	10	11
Variable Length Code 1 \parallel 0		10	110	111
Variable Length Code 2 \parallel 0		1	01	10

- Let the string be **b** a a d a b
- Fixed Code: 01 00 00 11 00 01 \rightarrow 12 bits
- Variable Code 1: 10 0 0 111 0 10 \rightarrow 10 bits
- Variable Code 2: $1 \ 0 \ 0 \ 10 \ 0 \ 1 \rightarrow 7$ bits
- Variable Code 2 compresses a lot
- Codes must be uniquely decodable
- Variable Code 2: 1001001 can be decoded as dabac or bacad or ...

Prefix free encoding : When no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Characters	a	b	С	d
Fixed-Length Code	00	01	10	11
Variable Length Code 1	0	10	110	111
Variable Length Code 2		1	01	10

Variable Length Code 2 is not prefix free

 \triangleright Code for 'a' (0) is a prefix of code for 'c' (01)

We give simple binary representation for common types of data

Can we represent $\mathbb{N}\times\mathbb{N}$ with $\{0,1\}^*?$

Why? 2-d numbers, rational numbers, cell/pixel address of matrix/image We have $E : \mathbb{N} \mapsto \{0, 1\}^*$, we need encoding of pairs of (natural) numbers Can we encode $x, y \in \mathbb{N} \times \mathbb{N}$ as E(x)E(y)? \triangleright concatenation

Theorem: If $E : O \mapsto \{0,1\}^*$ is prefix-free, then we can use it to encode $O \times O$ by concatenation \triangleright also encode longer lists of objects in O

If $E: O \mapsto \{0,1\}^*$ is prefix free, then $E': O \times O \mapsto \{0,1\}^*$ defined as E'(xy) = E(x)E(y) is one-to-one

Is our earlier mapping $E : \mathbb{N} \mapsto \{0, 1\}^*$ (decimal2Binary) prefix-free?

Theorem: Every encoding can be converted to a prefix-free one

Prefix-Free Binary Encoding of Common Data Type

We construct a prefix-free encoding $E: \{0,1\}^* \mapsto \{0,1\}^*$

Define
$$E_1 : \{0, 1\}^* \mapsto \{0, 1, \#\}^*$$
 as
for $x_1 \dots x_k \in \{0, 1\}^*$ $E_1(x_1 \dots x_k) = x_1 \dots x_k \#$
 $\triangleright E_1(10101) = 10101 \#$, $E_1(011) = 011 \#$, $E_1(0111) = 0111 \#$
Clearly, E_1 is prefix-free
Define $e_2 : \{0, 1, \#\} \mapsto \{0, 1\}^2$ as $e_2(0) = 01$, $e_2(1) = 10$, $e_2(\#) = 11$
Clearly, e_2 is prefix-free
Define $E_2 : \{0, 1, \#\}^* \mapsto \{0, 1\}^*$ as
for $x_1 \dots x_m \in \{0, 1, \#\}^*$ $E_2(x_1 \dots x_m) = e_2(x_1) \dots e_2(x_m)$

 $\triangleright E_1(101\#) = 10011011, E_2(10\#) = 100111, E_1(0\#1) = 011110$

Then $E: \{0,1\}^* \mapsto \{0,1\}^* = E_2 \circ E_1$ is prefix-free

Prefix-Free Binary Encoding of Common Data Type

Is our earlier mapping $E : \mathbb{N} \mapsto \{0,1\}^*$ (decimal2Binary) prefix-free?

Theorem: Every encoding can be converted to a prefix-free one

Let $E : \{0,1\}^* \mapsto \{0,1\}^*$ be the prefix-free code we constructed previously Denote by $D2B : \mathbb{N} \mapsto \{0,1\}^*$ the standard decimal to binary encoding

 $E' : \mathbb{N} \mapsto \{0,1\}^* = E \circ D2B$ is a prefix-free encoding

We give simple binary representation for common types of data Can we represent "everything" with $\{0,1\}^*$?

Can we represent $\mathbb R$ with $\{0,1\}^*?$

Recall Cantor's **DIAGNOLIZATION** proof to show

The set $\mathbb I$ of real numbers between 0 and 1 is not countable

▷ See CS 210 slides and Textbook [Barak Theorem 2.5]

 $\mathbb R$ cannot be represented with $\{0,1\}^*$

Can we represent $\mathbb R$ with $\{0,1\}^*?$

Use single/double-precision floating point as approximate representation

