Theory of Computation

Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding

■ Language

- Versions of Computational Problems

■ Decision Problems as Language Recognition
■ Models of Computation - CPU + Memory

Imdad ullah Khan

Binary Encoding

What is computation?

Computation: Processing information by applying a finite set of rules

How do we represent/encode input and output?
An encoding/representation scheme for a set of objects O is a one-to-one function $E: O \mapsto\{0,1\}^{*}$

Encoding should be one-to-one for decoding

$$
D: \operatorname{range}(E) \mapsto O \quad \text { s.t } \quad D(E(x))=x \quad \forall x \in O
$$

Binary Encoding of Data

We give simple binary representation for common types of data

Can we represent "everything" with $\{0,1\}^{*}$?
"everything" ?

Binary Encoding of Data

Can we represent \mathbb{N} with $\{0,1\}^{*}$?

Binary Encoding of Data

Does Σ matter?

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Binary Encoding of Data

Does $|\Sigma|$ matter?

Decimal	Binary	Unary
0	0	ϵ
1	1	1
2	10	11
3	11	111
4	100	1111
5	101	11111
6	110	111111
7	111	1111111
8	1000	11111111
9	1001	111111111
10	1010	1111111111
11	1011	11111111111
12	1100	111111111111
13	1101	1111111111111
14	1110	11111111111111
15	1111	111111111111111
16	10000	1111111111111111

Binary Encoding of Data

Can we represent \mathbb{Z} with $\{0,1\}^{*}$?

Binary Encoding of Data

Can we represent $\mathbb{N} \times \mathbb{N}$ with $\{0,1\}^{*}$?
Why? 2-d numbers, rational numbers, cell/pixel address of matrix/image

We have $E: \mathbb{N} \mapsto\{0,1\}^{*}$, we need encoding of pairs of (natural) numbers

Can we encode $x, y \in \mathbb{N} \times \mathbb{N}$ as $E(x) E(y)$?
\triangleright concatenation

Fixed versus Variable length codes

Fixed Length Code

Fixed number of bits for each object (symbox)
■ e.g. ASCII (7 bits) and Unicode (UTF-8, UTF-16)

- ASCII can represent $2^{7}=128$ symbols

Variable Length Code

Variable number of bits for each object
■ Can use fewer bits for more frequent symbols
■ e.g. Huffman code
■ Difficult to find, needs compression scheme

Fixed versus Variable length codes

Characters	a	b	c	d
Fixed-Length Code	00	01	10	11
Variable Length Code 1	0	10	110	111
Variable Length Code 2	0	1	01	10

- Let the string be $\mathbf{b} \mathbf{a} \mathbf{a d a b}$

■ Fixed Code: $010000110001 \rightarrow 12$ bits
■ Variable Code 1: $1000111010 \rightarrow 10$ bits
■ Variable Code 2: $1001001 \rightarrow 7$ bits

■ Variable Code 2 compresses a lot
■ Codes must be uniquely decodable
■ Variable Code 2: 1001001 can be decoded as dabac or bacad or ...

Prefix Free Codes

Prefix free encoding : When no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Characters	$\|\mid c c c c c$				
Fixed-Length Code	a	00	01	10	11
Variable Length Code 1		0	10	110	111
Variable Length Code 2	\mid	0	1	01	10

Variable Length Code 2 is not prefix free

$$
\triangleright \text { Code for 'a' }(0) \text { is a prefix of code for ' } c \text { ' (01) }
$$

Binary Encoding of Common Data Type

We give simple binary representation for common types of data
Can we represent $\mathbb{N} \times \mathbb{N}$ with $\{0,1\}^{*}$?
Why? 2-d numbers, rational numbers, cell/pixel address of matrix/image We have $E: \mathbb{N} \mapsto\{0,1\}^{*}$, we need encoding of pairs of (natural) numbers Can we encode $x, y \in \mathbb{N} \times \mathbb{N}$ as $E(x) E(y)$?
\triangleright concatenation
Theorem: If $E: O \mapsto\{0,1\}^{*}$ is prefix-free, then we can use it to encode $O \times O$ by concatenation $\quad \triangleright$ also encode longer lists of objects in O

If $E: O \mapsto\{0,1\}^{*}$ is prefix free, then $E^{\prime}: O \times O \mapsto\{0,1\}^{*}$ defined as $E^{\prime}(x y)=E(x) E(y)$ is one-to-one

Is our earlier mapping $E: \mathbb{N} \mapsto\{0,1\}^{*}$ (decimal2Binary) prefix-free?
Theorem: Every encoding can be converted to a prefix-free one

Prefix-Free Binary Encoding of Common Data Type

We construct a prefix-free encoding $\quad E:\{0,1\}^{*} \mapsto\{0,1\}^{*}$
Define $E_{1}:\{0,1\}^{*} \mapsto\{0,1, \#\}^{*}$ as

$$
\text { for } \quad x_{1} \ldots x_{k} \in\{0,1\}^{*} \quad E_{1}\left(x_{1} \ldots x_{k}\right)=x_{1} \ldots x_{k} \#
$$

$$
\triangleright E_{1}(10101)=10101 \#, \quad E_{1}(011)=011 \#, \quad E_{1}(0111)=0111 \#
$$

Clearly, E_{1} is prefix-free
Define $e_{2}:\{0,1, \#\} \mapsto\{0,1\}^{2}$ as $\quad e_{2}(0)=01, \quad e_{2}(1)=10, \quad e_{2}(\#)=11$
Clearly, e_{2} is prefix-free
Define $E_{2}:\{0,1, \#\}^{*} \mapsto\{0,1\}^{*}$ as

$$
\text { for } \begin{aligned}
\quad x_{1} \ldots x_{m} \in\{0,1, \#\}^{*} \quad E_{2}\left(x_{1} \ldots x_{m}\right)=e_{2}\left(x_{1}\right) \ldots e_{2}\left(x_{m}\right) \\
\triangleright E_{1}(101 \#)=10011011, \quad E_{2}(10 \#)=100111, \quad E_{1}(0 \# 1)=011110
\end{aligned}
$$

Then $E:\{0,1\}^{*} \mapsto\{0,1\}^{*}=E_{2} \circ E_{1} \quad$ is prefix-free

Prefix-Free Binary Encoding of Common Data Type

Is our earlier mapping $E: \mathbb{N} \mapsto\{0,1\}^{*}$ (decimal2Binary) prefix-free?
Theorem: Every encoding can be converted to a prefix-free one

Let $E:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be the prefix-free code we constructed previously
Denote by D2B : $\mathbb{N} \mapsto\{0,1\}^{*}$ the standard decimal to binary encoding
$E^{\prime}: \mathbb{N} \mapsto\{0,1\}^{*}=E \circ \mathrm{D} 2 \mathrm{~B} \quad$ is a prefix-free encoding

Binary Encoding of Common Data Type

We give simple binary representation for common types of data
Can we represent "everything" with $\{0,1\}^{*}$?

Binary Encoding of Common Data Type

Can we represent \mathbb{R} with $\{0,1\}^{*}$?

Recall Cantor's DIAGNOLIZATION proof to show

The set \mathbb{I} of real numbers between 0 and 1 is not countable
\triangleright See CS 210 slides and Textbook [Barak Theorem 2.5]
\mathbb{R} cannot be represented with $\{0,1\}^{*}$

Binary Encoding of Common Data Type

Can we represent \mathbb{R} with $\{0,1\}^{*}$?
Use single/double-precision floating point as approximate representation
64bit = double, double precision

