Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding
- Language
- Versions of Computational Problems
- Decision Problems as Language Recognition
- Models of Computation CPU + Memory

Imdad ullah Khan

Data Encoding in Computation

Computation: Processing information by applying a finite set of rules

Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

Computation: Processing information by applying a finite set of rules

Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

What is a computational problem?

A computational problem is characterized by three things

- \mathcal{I} : set of (valid) input instances
- S: solution space, set of possible solutions for instances in \mathcal{I}
- $f : \mathcal{I} \mapsto S$: The computational question or function

Computation: Processing information by applying a finite set of rules

Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

How do we represent/encode input and output?

Computation requires data representation

We have already done it for written communication in English

string representations

figure adapted from CMU 14-251 $\,$

What if we had fewer/more symbols?

Can all data be represented as bits ($\Sigma = \{0, 1\}$)?

String

A **String** is a finite concatenation of symbols from Σ Symbol : Examples a, b, 0, 1, x, /, #Alphabet : A finite set Σ of all valid symbols

 $\Sigma~=~\{0,1\}$

 $\Sigma = \{a, b, c\}$

 $\Sigma = \{A, B, \dots, Z, a, b, \dots, z, 0, 2, \dots, 9, `,', `,', `,', `,', \dots\}$

 $\Sigma^* \;=\; \text{set of all strings from } \Sigma$

 $000, 0, 0101, 110111, 11111, \ldots$

A ${\ensuremath{\text{String}}}$ is a finite concatenation of symbols from Σ

Length of a string is the number of characters/symbols in it |abbba| = 5 |01| = 2, |0101abc#\$abc| = 12

Empty String ($\epsilon)$ is a string with no symbols $|\epsilon|=0$

A String is a finite concatenation of symbols from $\boldsymbol{\Sigma}$

Concatenation of $x, y \in \Sigma^*$ (denoted by xy) is x followed by y

 $x = aaaaabbbabab \qquad y = bababa \qquad xy = aaaaabbbababababa$ $x = abc \qquad y = \epsilon \qquad xy = abc$

Reversal of $x \in \Sigma^*$ (x^R) consists of symbols of x written backwards x = aaabb $x^R = bbaaa$ $x = \epsilon$ $x^R = \epsilon$

What is $(xy)^R$?

Data Encoding

An encoding/representation scheme for a set of objects O is a one-to-one function $E:O\mapsto\{0,1\}^*$

Encoding should be one-to-one for decoding

 $D: range(E) \mapsto O \quad s.t \quad D(E(x)) = x \quad \forall x \in O$

Does every object have a corresponding encoding ?

Can two objects have the same encoding ?

Does every string correspond to a valid encoding ?

Does Σ make a difference ?

Does $|\Sigma|$ make a difference ?

An encoding/representation scheme for a set of objects O is a one-to-one function $E:O\mapsto\{0,1\}^*$

Encoding should be one-to-one for decoding

 $D: range(E) \mapsto O \quad s.t \quad D(E(x)) = x \quad \forall x \in O$

"Good" representation scheme is active research area in coding theory, information theory (theoretical) and representation learning (practical)

- Compression: Representation with small size (e.g., JPEG)
- Error correction: Representation that is robust to errors (e.g., "control digits", error correcting codes)
- Efficiency: Representation enabling fast operations (e.g., binary numbers, distance oracles)
- Feature extraction: Representation enabling data analytics
- Secrecy: Representation hiding certain information (e.g., encryption)