Theory of Computation

Computation, Encoding and Languages

- Computational Problems, Strings and Data Encoding
- Binary Encoding

■ Language

- Versions of Computational Problems

■ Decision Problems as Language Recognition
■ Models of Computation - CPU + Memory

Imdad ullah Khan

Data Encoding in Computation

What is computation?

Computation: Processing information by applying a finite set of rules

Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

What is computation?

Computation: Processing information by applying a finite set of rules

Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

What is a computational problem?

A computational problem is characterized by three things

- I: set of (valid) input instances

■ S: solution space, set of possible solutions for instances in \mathcal{I}
■ $f: \mathcal{I} \mapsto S$: The computational question or function

$\xrightarrow{\text { Input }}$ IS-PRIME	$\xrightarrow{\text { Output }}$	Input	$\xrightarrow{\text { Output }}$	Input	
Instance $\in \mathcal{I}$	Solution $\in S$	Instance $\in \mathcal{I}$	Solution $\in S$	Instance $\in \mathcal{I}$	Solution $\in S$
0	No	0,0	0	[$0,3,2,9,5$]	[0,2,3,5,9]
1	No	0,1	0	[9, 8, 6, 4, 3, 1]	[1, 3, 4, 6, 8, 9]
${ }_{3}$	Yes	1,2	${ }_{6}$	[1, 2, .3, 8, 7.4]	[1, 2, , 3, 7. 4,8]
3 4	Yes No	2, 2	6 14	[-1,2, 9, 7,6]	[-1, 2, 6, 7, 9]
5	Yes	2,5	10	[4, 5, 6, 7, 8]	[4, 5, 6, 7, 8]
	No	4,6	24	[-2.3, -5.9, -.4.3]	[-5.9, -.4.3, -2.3]
7	Yes	9,7	63	[7, -3.6, 9, .8, 5]	$[-3.6,5, .8,7,9]$

What is computation?

Computation: Processing information by applying a finite set of rules
Description of Processing is called Algorithm that converts the input to the desired output

Different set of rules/operations lead to different computational capabilities and limits

Information needs to be encoded to be input for application of rules/operations

How do we represent/encode input and output?

Data Encoding

Computation requires data representation
We have already done it for written communication in English

figure adapted from CMU 14-251
What if we had fewer/more symbols?
Can all data be represented as bits $(\Sigma=\{0,1\})$?

String

A String is a finite concatenation of symbols from Σ
Symbol: Examples $a, b, 0,1, x, /$, $\#$
Alphabet: A finite set Σ of all valid symbols
$\Sigma=\{0,1\}$
$\Sigma=\{a, b, c\}$
$\Sigma=\left\{A, B, \ldots Z, a, b, \ldots, z, 0,2, \ldots, 9, \prime^{\prime}, \prime^{\prime},{ }^{\prime} ; \prime, \ldots\right\}$
$\Sigma^{*}=$ set of all strings from Σ
$000,0,0101,110111,11111, \ldots$

String

A String is a finite concatenation of symbols from Σ

Length of a string is the number of characters/symbols in it $|a b b b a|=5 \quad|01|=2, \quad|0101 a b c \# \$ a b c|=12$

Empty String (ϵ) is a string with no symbols
$|\epsilon|=0$

String

A String is a finite concatenation of symbols from Σ

Concatenation of $x, y \in \Sigma^{*}$ (denoted by $x y$) is x followed by y
$x=$ aaaaabbbabab $\quad y=b a b a b a \quad x y=$ aaaaabbbababbababa
$x=a b c \quad y=\epsilon \quad x y=a b c$

Reversal of $x \in \Sigma^{*}\left(x^{R}\right)$ consists of symbols of x written backwards $x=$ aaabb $\quad x^{R}=$ bbaaa $\quad x=\epsilon \quad x^{R}=\epsilon$

What is $(x y)^{R}$?

Data Encoding

An encoding/representation scheme for a set of objects O is a one-to-one function $E: O \mapsto\{0,1\}^{*}$

Encoding should be one-to-one for decoding

$$
D: \operatorname{range}(E) \mapsto O \quad \text { s.t } \quad D(E(x))=x \quad \forall x \in O
$$

Does every object have a corresponding encoding ?
Can two objects have the same encoding ?
Does every string correspond to a valid encoding ?
Does Σ make a difference ?
Does $|\Sigma|$ make a difference ?

Data Encoding

An encoding/representation scheme for a set of objects O is a one-to-one function $E: O \mapsto\{0,1\}^{*}$

Encoding should be one-to-one for decoding

$$
D: \operatorname{range}(E) \mapsto O \quad \text { s.t } \quad D(E(x))=x \quad \forall x \in O
$$

"Good" representation scheme is active research area in coding theory, information theory (theoretical) and representation learning (practical)

■ Compression: Representation with small size (e.g., JPEG)
■ Error correction: Representation that is robust to errors (e.g., "control digits", error correcting codes)
■ Efficiency: Representation enabling fast operations (e.g., binary numbers, distance oracles)

- Feature extraction: Representation enabling data analytics

■ Secrecy: Representation hiding certain information (e.g., encryption)

