
Theory of Computation

Introduction to Computation

What is Computation

Paper-Pencil Arithmetic and Compass-Ruler Geometry

Why Study Theory of Computation – The Computational Lens

Formalizing Computation

Computability

Complexity

Cryptography

Imdad ullah Khan

Imdad ullah Khan (LUMS) Introduction to Computation 1 / 30

What is Computation?

Notice no mention of a device

Computer science is no more about computers than astronomy is
about telescopes

Edsger Dijkstra

Imdad ullah Khan (LUMS) Introduction to Computation 2 / 30

What is Computation?

Computation: Processing information by applying a finite set of rules

Imdad ullah Khan (LUMS) Introduction to Computation 3 / 30

Paper + Pencil Arithmetic

+

1 1 1

4 6 9 2 7 5 8

5 1 7 2 2 6 1

9 8 6 5 0 1 9

7 5 8
6 3 2

1 5 1 6
2 2 7 4

4 5 4 8
4 7 9 0 5 6

×

Single Digit Multiplication Lookup Table

Rules to process the information implicitly give tools and power available

Imdad ullah Khan (LUMS) Introduction to Computation 4 / 30

What is Computation?

Computation: Processing information by applying a finite set of rules

“Computer”Input Output

Description of Processing is called Algorithm that converts the input to
the desired output

Different set of rules/operations lead to different computational
capabilities and limits

Information needs to be encoded to be input for application of
rules/operations

Imdad ullah Khan (LUMS) Introduction to Computation 5 / 30

Why Study Theory of Computation?

1 To learn new ways of thinking about computing

To learn new ways of thinking about computing

We learn general ideas that can be applied to many models of
computation expressed abstractly and precisely

Abstractly: independent of technology, applies both to present and future

▷ Suppress inessential implementation level details

Precisely: means can formally prove

Positive Results: What is computable, correctness of algorithms/systems

Negative Results: What is not computable/not computable in fixed
resources

Imdad ullah Khan (LUMS) Introduction to Computation 6 / 30

Why Study Theory of Computation?

1 To learn new ways of thinking about computing

To learn new ways of thinking about computing

We learn general ideas that can be applied to many models of
computation expressed abstractly and precisely

What can (not) be computed? ▷ Computability

What can (not) be computed using a fixed resources? ▷ Complexity

Can we say Problem X is “harder” than Problem Y ?

Is there a single computer that can simulate every other computer?

▷ Universal Computer

Imdad ullah Khan (LUMS) Introduction to Computation 7 / 30

Why Study Theory of Computation?

1 To learn new ways of thinking about computing

2 To formalizes different models of computational devices

Finite Automata

Pushdown Automata

Stream Computer

Turing Machines

Quantum Computer

Parallel Computer

Distributed Computers

Imdad ullah Khan (LUMS) Introduction to Computation 8 / 30

Imdad ullah Khan (LUMS) Introduction to Computation 9 / 30

Formalizing Computation

We have been computing for thousands of years

Input: Two n digits arrays A and B
Output: (integer) C = A× B

Algorithm Integer Multiplication
C ← 0

for i = 1 to n do

for j = 1 to n do

C ← C + 10i+jA[i] ∗ B[j]

Input: Two integers a and b
Output: (integer) C = gcd(a, b)

Algorithm gcd Computation

function gcd(a, b)

if b = 0 then

return a

else
r ← a % b

return gcd(b, r)

But computation was formalized only recently

Imdad ullah Khan (LUMS) Introduction to Computation 10 / 30

Formalizing Computation

Hilbert’s 10th problem (1900)

Devise a finite procedure to check if a diophantine has integral solution

diophantine equation (e.g. multivariate polynomial) with integer
coefficients

e.g. ax + by = c , aw4 + bx4 + cy4 + dz4 = 0 a, b, c , d ∈ Z

Entscheidungsproblem [Hilbert and Ackermann (1928)]

Devise a finite procedure to determine the validity of a logical expression

¬∃ x , y , z ∈ Z : (xn + yn = zn) ∧ (n ≥ 3)

Can Mathematics be mechanized? ▷ automatic theorem proving

Imdad ullah Khan (LUMS) Introduction to Computation 11 / 30

Formalizing Computation

Alonzo Church (1935/1936)

Lambda Calculus is a reasonable notion of finite procedure “=algorithm”

Alan Turing (1936)

Turing Machine is a reasonable notion of finite procedure “=algorithm”

Alan Turing (1937)

Turing Machine = Lambda Calculus

Imdad ullah Khan (LUMS) Introduction to Computation 12 / 30

Formalizing Computation

Church-Turing Thesis

Any computational problem that can be solved by a physical device, can
be solved by a Turing Machine

“Computable” = “Computable by a Turing Machine”

3 + 4 = 7

Real World Abstract World

Church-Turing Thesis

Imdad ullah Khan (LUMS) Introduction to Computation 13 / 30

Formalizing Computation

Hilbert’s 10th problem (1900)

Devise a finite procedure to check if a diophantine has integral solution

Matiyasevich-Robinson-Davis-Putnam (1970)

There is no algorithm to solve this problem

Entscheidungsproblem [Hilbert and Ackermann (1928)]

Devise a finite procedure to determine the validity of a logical expression

Turing (1936)

There is no algorithm to solve this problem

Imdad ullah Khan (LUMS) Introduction to Computation 14 / 30

Two main questions in theoretical computer science

Is there an algorithm to solve a problem ▷ Computability

Just saw two examples of negative answers

Is there an efficient algorithm to solve a problem ▷ Complexity

Efficiency is measured by requirements of runtime, memory, number
messages passed, random bits, quantum resources, energy,

Camp-1: Algorithm Designers Camp-2: Complexity Theorists

Coming up with efficient algorithms Proving no efficient algorithm exists

Camp-3: Cryptographer (e.g.)

Using Camp-2 results to solve Camp-1 Problems

Imdad ullah Khan (LUMS) Introduction to Computation 15 / 30

Two main questions in theoretical computer science

Is there an algorithm to solve a problem ▷ Computability

Just saw two examples of negative answers

Is there an efficient algorithm to solve a problem ▷ Complexity

Efficiency is measured by requirements of runtime, memory, number
messages passed, random bits, quantum resources, energy,

Camp-1: Algorithm Designers Camp-2: Complexity Theorists

Coming up with efficient algorithms Proving no efficient algorithm exists

Camp-3: Cryptographer (e.g.)

Using Camp-2 results to solve Camp-1 Problems

Imdad ullah Khan (LUMS) Introduction to Computation 16 / 30

Computability

The Halting Problem

Input: A computer program A.cpp

Output: Yes if A.cpp halts on every legal input, else No

Compilers and interpreters take programs as input and “analyze” them

This problem has many applications

Imdad ullah Khan (LUMS) Introduction to Computation 17 / 30

Computability: Halting Problem

How to check if a program halts

Algorithm Clearly halts

return true

Algorithm Halts if n ≥ 0 and even

while n ̸= 0 do
n← n − 2

Algorithm Never halts

n← 1
while n ̸= 0 do
n← n + 1

Imdad ullah Khan (LUMS) Introduction to Computation 18 / 30

Computability: Halting Problem

Algorithm Collatz Program (integer n)

while n ̸= 1 do

if n is even then
n← n/2

else
n← 3n + 1

n = 3 =⇒ 3, 10, 5, 16, 8, 4, 2, 1

n = 4 =⇒ 4, 2, 1

n = 5 =⇒ 5, 16, 8, 4, 2, 1

n = 6 =⇒ 6, 3, 10, 5, 16, 8, 4, 2, 1

n = 7 =⇒ 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 15, 8, 4, 2, 1

n = 8 =⇒ 8, 4, 2, 1

n = 9 =⇒ 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 15, 8, 4, 2, 1

27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700,
350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319,
958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308,
1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

Imdad ullah Khan (LUMS) Introduction to Computation 19 / 30

Computability: Halting Problem

Algorithm Collatz Program (integer n)

while n ̸= 1 do

if n is even then
n← n/2

else
n← 3n + 1

Collatz Conjecture (1937)

For every integer n this program eventually reaches 1 (thus halts)

aka wondrous numbers, 3n + 1 conjecture, Syracuse problem, Ulam conjecture

For about a month everyone at Yale worked on it, with no result. A similar phenomenon
happened when I mentioned it at the University of Chicago. A joke was made that this
problem was part of a conspiracy to slow down mathematical research in the U.S.

Shizuo Kakutani, 1960

Mathematics is not yet ripe enough for such questions.

Paul Erdös, 1983

Imdad ullah Khan (LUMS) Introduction to Computation 20 / 30

Computability: Halting Problem

Fermat’s Last Theorem (1637)

For n ≥ 3, an + bn = cn has no solution where a, b, c are positive integers

Algorithm negFLT(integer n)

flag ← true
a← 1
while flag = true do

for b = 1→ a do
for c = 2→ a+ b do
if an + bn = cn then
flag ← false

a← a+ 1

halt(negFLT(n)) = Yes ⇐⇒ Fermat’s last theorem is false

Ok! we know FLT is true, how about some other

Imdad ullah Khan (LUMS) Introduction to Computation 21 / 30

Computability: Halting Problem

Goldbach Conjecture (1742)

Every even integer n > 2 is the sum of two primes.

Algorithm negGoldbach(even integer n)

flag ← true
n← 2
while flag = true do

flag ← false
n← n + 2
for p = 2→ n do
if isPrime(p) and isPrime(n − p) then

flag ← true
break

halt(negGoldbach(n)) = Yes ⇐⇒ Goldbach conjecture is false

An algorithm for halt(·) would resolve the Goldbach conjecture

Imdad ullah Khan (LUMS) Introduction to Computation 22 / 30

Complexity

A,B ∈ N C = A ∗B

input output

Multiplying two n digits integers Algorithm

Algorithm Repeated Addition

C ← 1
for i = 1 to B do

C ← C + A

return C

A ∗ B = A+ A+ . . .+ A︸ ︷︷ ︸
B times

Each addition takes O(n) single digit addition, number of addition is B

Total runtime is O(n10n) ▷ ∵ B could be 10n

Imdad ullah Khan (LUMS) Introduction to Computation 23 / 30

Complexity

A,B ∈ N C = A ∗B

input output

Multiplying two n digits integers Algorithm

Algorithm Long Multiplication

for i = 1 to n do
c ← 0
for j = 1 to n do

Z [i][j + i − 1]← (A[j] ∗ B[i] + c) mod 10
c ← (A[j] ∗ B[i] + c)/10

Z [i][i + n]← c

carry ← 0
for i = 1 to 2n do

sum← carry
for j = 1 to n do

sum← sum + Z [j][i]

C [i]← sum mod 10
carry ← sum/10

C [2n + 1]← carry

7 5 8
6 3 2

1 5 1 6
2 2 7 4

4 5 4 8
4 7 9 0 5 6

×

Total single digit
arithmetic ops: O(n2)

Imdad ullah Khan (LUMS) Introduction to Computation 24 / 30

Complexity
A,B ∈ N C = A ∗B

input output

Multiplying two n digits integers Algorithm

AB = (10nw + x)(10ny + z) = 102n (wy)︸︷︷︸
1 multiplication

+10n (wz + xy)︸ ︷︷ ︸
2 multiplications

+ xz︸︷︷︸
1 multiplication

Algorithm Recursive Multiplication

function rec-multiply(A,B, 2n) ▷ n = 2k

if n = 1 then return A ∗ B
else

A = 10nw + x , B = 10ny + z
wy ← rec-multiply(w , y , n)
wz ← rec-multiply(w , z , n)
xy ← rec-multiply(x , y , n)
xz ← rec-multiply(x , z , n)
return 102n(wy) + 10n(wz + xy) + xz

T (2n) =

{
1 if n = 1

4T (n) + 6n if n > 1

= O(n2)

Imdad ullah Khan (LUMS) Introduction to Computation 25 / 30

Complexity

A,B ∈ N C = A ∗B

input output

Multiplying two n digits integers Algorithm

AB = (10nw + x)(10ny + z) = 102n (wy)︸︷︷︸
1 multiplication

+10n (wz + xy)︸ ︷︷ ︸
2 multiplications

+ xz︸︷︷︸
1 multiplication

wz + xy = (w + x)(y + z)− wx − yz = wx + wz + xy + xz − wy − xz

Algorithm Karatsuba Multiplication

function kartasuba(x , y , 2n) ▷ n = 2k

if n = 1 then return A ∗ B
else

A = 10nw + x , B = 10ny + z
wy ← kartasuba(w , y , n)
xz ← kartasuba(x , z , n)
mid ← kartasuba(w + x , y + z , n)
return 102n(wy)+10n(mid−wy−xz)+xz

T (2n) =

{
1 if n = 1

3T (n) + 6n if n > 1

= O(n1.58)

Imdad ullah Khan (LUMS) Introduction to Computation 26 / 30

Complexity

A,B ∈ N C = A ∗B

input output

Multiplying two n digits integers Algorithm

Repeated Addition (adding x to itself y times) ▷ O(n10n)

Long Multiplication ▷ O(n2)

Kolmogorov (1960) conjecture: grade-school algorithm is the best possible

Karatsuba’s Algorithm (1960) ▷ O(n1.58)

Harvey & van der Hoeven (2019) ▷ O(n log n)

Can we do better? ▷ Not known either way

Imdad ullah Khan (LUMS) Introduction to Computation 27 / 30

Cryptography

x ∈ N x = p ∗ q

input output

Factorizing an n digits integer Algorithm
p, q ∈ prime

▷ p and q large primes (∼ n/2-digits) =⇒ x = pq is n-digits long

Factorizing x into p and q is very hard ▷ Inverse of multiplication

1 Try all factors from 3 to x ▷ O(10n)

2 Try all factors from 3 to
√
x ▷ O(10n/2)

3 Use number field sieve ▷ O(10n/3)

▷ This is essentially the best known method

No “efficient algorithm” to find p and q from x ▷ widely believed

Indeed no “efficient algorithm” to check any non-trivial property of p or q

e.g. Is one of p and q have last digit 3?

Imdad ullah Khan (LUMS) Introduction to Computation 28 / 30

Cryptography

Alice and Bob each want to
win a coin flip over phone

Ok, Heads!

I will flip, you call it

Sorry, it was tails

Imdad ullah Khan (LUMS) Introduction to Computation 29 / 30

Cryptography

Alice and Bob each want to
win a coin flip over phone

No efficient algorithm to check if p or q has last digit = 3 from x(= pq)

Sends x (= p ∗ q)

To call heads, choose p and q,
so none ends with 3

To call tails, choose p and q,
so at least one ends with 3

I will flip

Sends outcome of flip

Sends p and q

Checks if x = p ∗ q

Can Bob cheat? ▷ Can he
guess last digit of p and q?

Can Alice cheat? ▷ Can she
find x = p′ ∗ q′?

What if Alice choose p, q, r
with r ending with 3 and
reveals p and qr or pq and r?
▷ Primality testing is efficient

Imdad ullah Khan (LUMS) Introduction to Computation 30 / 30

