Asymptotic Analysis

- Runtime Analysis
- Big Oh $O(\cdot)$
- Complexity Classes and Curse of Exponential Time
- $\Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ Relational properties

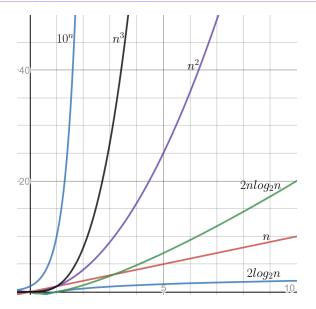
Imdadullah Khan

Asymptotic-Complexity Classes

Class Name	Class Symbol	Example	
Constant	O(1)	Comparison of two integers	
Logarithmic	O(log(n))	Binary Search, Exponentiation	
Linear	<i>O</i> (<i>n</i>)	Linear Search	
Log-Linear	On(log(n))	Merge Sort	
Quadratic	$O(n^2)$	Integer multiplications	
Cubic	<i>O</i> (<i>n</i> ³)	Matrix multiplication	
Polynomial	$O(n^a),\ a\in\mathbb{R}$		
Exponential	$O(a^n),~a\in\mathbb{R}$	Print all subsets	
Factorial	O(n!)	Print all permutations	

 $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

Growth Rates of Functions



Fibonacci Sequence

 $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ F_{n-1} + F_{n-2} & \text{if } n > 2 \end{cases}$$

Find F_n : The curse of Exponential time

Implementation of the recursive definition of F_n

```
function FIB1(n)

if n = 0 then

return 0

else if n = 1 then

return 1

else

return FIB1(n - 1) + FIB1(n - 2)
```

Is it correct?

- How much time it takes to compute F_n ?
- Can we do better?

Find F_n : The curse of Exponential time

Let T(n) be the number of ops (comparisons and additions) on input n

$$T(n) = \begin{cases} 1 & \text{if } n = 0\\ 2 & \text{if } n = 1\\ T(n-1) + T(n-2) + 3 & \text{if } n > 2 \end{cases}$$

By definition, we have $T(n) > F_n$

The running time of FIB1(n) grows as fast as F_n

$$T(n) \geq 2^{.69n}$$

exponential in *n* (prove by induction)

Find F_n : The curse of Exponential time

 $T(n) \geq 2^{.69n}$

- For n = 300, computing F_{300} takes (much) more than 2^{150} ops
- On a 64*THz* computer (64 \times 2⁴⁰ operations per second)
- It needs $2^{104}s > 10^{27}h > 10^{23}$ years

Another perspective to see growth of exponential time

• Runtime of FIB1(n) is $\geq 2^{0.694n} \approx (1.6)^n$

• it takes 1.6 times longer to compute F_{n+1} than F_n

- Moore's law \implies computers get roughly 1.6 times faster each year
- If we can compute F_{100} with this year's technology, next year we will manage F_{101} , the year after, F_{102} , ...

▷ one more Fibonacci number every year

Such is the curse of exponential time

How can we improve it?

Imdadullah Khan (LUMS)

Exponential vs Polynomial Growth rates

Sizes of problems that can be solved within 10^{12} operations on today's computer and next years computer with double speed

Complexity	Increase	Problem Size (today)	Problem Size (next year)
n	$n \rightarrow 2n$	10 ¹²	2×10^{12}
n ²	$n \rightarrow \sqrt{2}n$	10 ⁶	$1.4 imes 10^6$
n ³	$n \rightarrow \sqrt[3]{2}n$	10 ⁴	$1.25 imes 10^4$
2 ^{<i>n</i>/10}	$n \rightarrow n + 10$	400	410
2 ^{<i>n</i>}	$n \rightarrow n+1$	40	41