
Algorithms

Asymptotic Analysis

Runtime Analysis

Big Oh - O(·)

Complexity Classes and Curse of Exponential Time

Ω(·), Θ(·), o(·), ω(·) - Relational properties

Imdadullah Khan

Imdadullah Khan (LUMS) Asymptotic Analysis 1 / 9

Analysis of Algorithms

Algorithm analysis is the theoretical study of performance and
resource utilization of algorithms

How “goodness” of algorithms can be measured?

Time consumption

Space and memory consumption

Bandwidth consumption or number of messages passed

Energy consumption

...

Imdadullah Khan (LUMS) Asymptotic Analysis 2 / 9

How to measure runtime?

Clock-time of algorithm execution is not a suitable measure

Depends on machine/hardware, operating systems, other concurrent
programs, implementation language and style etc.

We want platform independent and implementation Language
independent

Number of operations is the right framework

Time complexity is measured in terms of number of elementary
operations

Assuming computation of each elementary operation takes fixed
amount of time

Important to decide which operations are counted as elementary

Imdadullah Khan (LUMS) Asymptotic Analysis 3 / 9

Runtime as a function of input size

We want a consistent mechanism to measure efficiency that is

Platform independent

Language independent

Has predictive value with respect to increasing input sizes

We measure runtime by number of elementary operations as a
function of size of input

Size of input: usually number of bits needed to encode the input
instance, can be length of an array, number of nodes in a graph etc.

Imdadullah Khan (LUMS) Asymptotic Analysis 4 / 9

Best/Worst/Average Case

For inputs of fixed size (n) there could be different runtimes
depending on different instances

Recall the parity test of Odd/Even integers

Imdadullah Khan (LUMS) Asymptotic Analysis 5 / 9

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If A is given in an array

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8

if A[0] ∈ {0, 2, 4, 6, 8} then
return true

if A[0] = 0 then return true
else if A[0] = 2 then return true
else if A[0] = 4 then return true

...
else return false

Number of comparisons is different for A[0] = 0 and A[0] = 8

Imdadullah Khan (LUMS) Asymptotic Analysis 6 / 9

Best/Worst/Average Case

For inputs of fixed size (n) there could be different runtimes
depending on different instances

Let T (I) be the time, algorithm takes on instance I

Best case runtime: tbest(n) = minI :|I |=n

{
T (I)

}
Worst case runtime: tworst(n) = maxI :|I |=n

{
T (I)

}
Average case runtime: tav (n) = averageI :|I |=n

{
T (I)

}

In general, we consider the worst case runtime

Imdadullah Khan (LUMS) Asymptotic Analysis 7 / 9

Asymptotic Notation

We use asymptotic analysis of functions for running time

Characterize running time for all inputs instances of a certain size (so
worst-case) with just one runtime function

Small inputs are not much of a problem, we want to learn behavior of
an algorithm on large inputs

Imdadullah Khan (LUMS) Asymptotic Analysis 8 / 9

Asymptotic Notation

Our foremost goals in analysis of algorithms are

Determine running time of algorithms on inputs of large size

Determine how the runtime grows with increasing inputs

How the runtime changes when input size is doubled/tripled?

Imdadullah Khan (LUMS) Asymptotic Analysis 9 / 9

