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The Ford-Fulkerson Algorithm - Slow Example

The Ford-Fulkerson algorithm can be implemented in O(mCs) time, where
Cs = c([{s}, {s}])

A tighter upper bound on runtime is O(m · C ∗) = O(m · size(f )) where
C ∗ is capacity of min cut

The size of max flow f can be arbitrarily large

not size of the input

May be this upper bound is very loose upper (never met)
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The Ford-Fulkerson Algorithm - Slow Example
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Could take 2M iterations, augmenting 1 unit of flow

No restriction on the choice of augmenting path

Choose the augmenting path wisely to fix the problem
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Max Flow : The Edmond-Karp Algorithm

Fix to Ford-Fulkerson algorithm: Choose shortest augmenting paths

Given a flow network G with source s and t

Algorithm Edmond-Karp Algorithm

f ← 0 ▷ Initialize to a (valid) flow of size 0 (on every edge)
while true do
Compute Gf

Find a shortest s − t path P in Gf ▷ Using bfs
if no such path then
return f

else
f ←augment(P, f )

Correctness and optimality follow immediately from the above proof,
as that works for any augmenting path

Need to analyze running time
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Max Flow : The Edmond-Karp Algorithm

Running the Edmond-Karp algorithm on the pathalogical example
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The Edmond-Karp Algorithm: Analysis
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Each augment(P, f ) saturates at least one edge on P

The saturated edge is unavailable for the next iteration (possibly
many iterations), at least in that direction

The key is to prove that an edge is not saturated too many times

▷ Main problem in the pathological example, the edge ab was saturated
too many times
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The Edmond-Karp Algorithm: Increasing Distances

After each iteration of the Edmonds-Karp algorithm, dGf
(s, v) (hop-length

in Gf from s to v) does not decrease for all vertices v .

Same is true for dGf
(v , t) and hence dGf

(s, t).

Suppose the edge xy is saturated in Gf and f ′ is the augmented flow

When xy is saturated we remove it from Gf ′ ▷ edge yx is there

dGf
(s, y) is greater than dGf

(s, x) ▷ sup-path optimality

if there was a shorter s − y path we will use that to go to t

In Gf ′ , the edge xy is not present, there cannot be a shorter path
from s to v (a backward edge cannot decrease distance, as it is from
a vertex farther away from s (e.g. y) to a vertex closer to s (e.g. x))

All edges ever added are from vertices farther from s to vertices closer
to s (we only introduce reverse edges along a shortest path)
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The Edmond-Karp Algorithm: Edge Reuse

When edge e = xy is saturated it is not reused until dGf
(s, t) strictly increases
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red dashed lines is P ′ when (yx) is used next timex
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Suppose e = xy is saturated when augmenting P = s, . . . , x , y , . . . , t

P is a shortest s − t path, ℓ(P) = d(s, t)

Let d1 = ℓ(P[s − x ]) and d2 = ℓ(P[y − t]) ▷ ℓ(P) = d1 + 1 + d2

Note that in this Gf d(s, y) = d1 + 1

Suppose yx is used in some Gf ′ (since xy doesn’t exist any more, for xy to
be used again, yx must be used before it)

By the previous lemma dGf ′ (s, y) ≥ d1 + 1 and dGf ′ (x , t) ≥ d2 + 1

If a path in Gf ′ uses yx , since it is a shortest path,
dGf ′ (s, t) ≥ d1 + 1 + 1 + d2 + 1 ≥ d1 + d2 + 3 ≥ ℓ(P) + 2

Hence to use xy , distance from s to t must have increased
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The Edmond-Karp Algorithm: Edge Reuse

The Edmond-Karp algorithm takes O(nm2) time

Distance from s to t can only increase O(n) times ▷ why?

For a fixed value d(s, t), an edge xy can be saturated only once

After xy is saturated once, if the distance does not increase, then the algorithm
can saturate other edges but not xy

Hence for this fixed value of distance there can be at most O(m) iterations
▷ each iteration saturates some edge

After which the distance must increase, and for this second fixed value again
there could be O(m) iterations after which the distance must increase

Number of different values of d(s, t) is O(n) so there could be O(nm) iterations

Each iteration takes O(n +m) (bfs). Hence total runtime is O(nm2)

▷ could be O(n5) for dense graphs. But is polynomial in size of input

See what happens if all capacities are 0’s or all are 1’s
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Max Flow : Better Algorithms

There are many better algorithms (please read about them)

Some algorithms are directly based on the Ford-Fulkerson algorithm

▷ (like Edmond-Karp algorithm)

Especially, read the push-relabel algorithm in your textbook

You are also encouraged to read about the scaling algorithm. This is
a very useful trick

The state of the art algorithm for Max-Flow algorithm is O(nm)

Imdad ullah Khan (LUMS) Network Flow 10 / 1


