
Algorithms

Network Flow

Maximum Flow: Problem Formulation

Maximum Flow: Upper Bound

Maximum Flow: Adding flow along paths

Residual Network and Augmenting Path

Ford-Fulkerson Algorithm – Max-Flow-Min-Cut Theorem

Edmond-Karp Algorithm

Maximum Flow: Variants and Applications

Imdad ullah Khan

Imdad ullah Khan (LUMS) Network Flow 1 / 1

Max Flow: Augmenting Path

An augmenting path is a simple s − t path in the residual graph Gf

▷ It is used to augment the flow f

For an augmenting path P in Gf , bottleneck(P, f) = mine∈P c ′e
▷ the minimum residual capacity of any edge on P in Gf

Note c ′e is the residual capacity of the edge e (its capacity in Gf)

Algorithm augment(P, f) augment flow using a path P in Gf

b ← bottleneck(P, f)

f ′ ← f
for each edge e = uv ∈ P do
if e is a forward edge then

f ′e ← fe + b

else if e is a backward edge then

f ′vu ← fvu − b

Imdad ullah Khan (LUMS) Network Flow 2 / 1

Max Flow : The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm repeatedly augments the current flow until
the flow cannot be improved further

Algorithm Ford-Fulkerson Algorithm (G)

f ← 0 ▷ Initialize to a (valid) flow of size 0 (on every edge)

while true do

Compute Gf

Find an s − t path P in Gf ▷ Using e.g. dfs

if no such path then
return f

else
f ←augment(P, f)

Imdad ullah Khan (LUMS) Network Flow 3 / 1

Max Flow : The Ford-Fulkerson Algorithm

Executing the Ford-Fulkerson Algorithm on the following graph

s

a

b

c

d

e

t

3

3

4

10

2

1

1
1

5
5

2

diagrams taken from the DPV book

Imdad ullah Khan (LUMS) Network Flow 4 / 1

Max Flow : The Ford-Fulkerson Algorithm
Figure 7.6 The max-flow algorithm applied to the network of Figure 7.4. At each iteration,
the current flow is shown on the left and the residual network on the right. The paths chosen
are shown in bold.

Current flow Residual graph

(a)

s

a

b

c

d

e

t s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

(b)

s

a

b

c

d

e

t

1

1

1

1

1

s

a

b

c

d

e

t3

4

10 1

1 1

21
2

1
1

1

4

1
4

(c)

s

a

b

c

d

e

t

1

1
1

2

2

2

s

a

b

c

d

e

t3

4

10 1

1 1

2

1

4

2

2
1

3
2

(d)

s

a

b

c

d

e

t1
1

2

2

5

4

3

s

a

b

c

d

e

t3

10 1

1 1

2

2

2
1

3
1

1
4

5

204

1

Imdad ullah Khan (LUMS) Network Flow 5 / 1

Max Flow : The Ford-Fulkerson Algorithm

Figure 7.6 Continued

Current Flow Residual Graph

(e)

s

a

b

c

d

e

t1

2

2

54

5

1

s

a

b

c

d

e

t3

10 1

1 1

2

2
1

54

5

1
1

(f)

s

a

b

c

d

e

t1

2

2

54

5

21

1 s

a

b

c

d

e

t

10 1

1 1

2

2

54

5

2

2
1

1

205

2

Imdad ullah Khan (LUMS) Network Flow 6 / 1

Max Flow : The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm repeatedly augments the current flow

Algorithm Ford-Fulkerson Algorithm (G)

f ← 0 ▷ Initialize to a (valid) flow of size 0 (on every edge)

while true do
Compute Gf

Find an s − t path P in Gf ▷ Using e.g. dfs

if no such path then
return f

else
f ←augment(P, f)

“Correctness” follows from the correctness of the augment(P, f)

We need to prove its termination

We need to discuss its implementation and analyze its running time

Imdad ullah Khan (LUMS) Network Flow 7 / 1

The Ford-Fulkerson Algorithm - Analysis

Integrality:

If ce is integer for every edge e in G , then for every intermediate flow f

flow on every edge, fe is integer

capacity on every edge in Gf , c ′e is integer

Proof : After iteration i , flow and capacity on all edges are integers

Basis Step: After iteration 0, ∀e ∈ E , fe = 0 and c ′e ∈ Z by construction

Inductive Hypothesis: Before iteration i , ∀e ∈ E , fe ∈ Z and c ′e ∈ Z

The capacity b of the bottleneck edge on augmenting path P is integer

∀e ∈ E f
(i)
e = f

(i−1)
e ± b ▷ hence remains ∈ Z

Similarly ∀e ∈ E in Gf (i) , c ′e (of forward/backward edges) remain ∈ Z

Imdad ullah Khan (LUMS) Network Flow 8 / 1

The Ford-Fulkerson Algorithm - Analysis

Flow is monotonically increasing:

Let f be a flow in G and let P be a s − t path in Gf .

If f ′ is the flow returned by the Augment(P, f) function, then

size(f ′) = size(f) + b, where b = bottleneck(P, f)

size(f) = f out(s)

P is s − t path in Gf =⇒ the first edge e on P is outgoing from s

This edge sx must be a forward edge in Gf , (because if sx is a
backward edge, then xs ∈ E (G), contradicting deg−(s) = 0 in G

The augment procedure will make f ′(e) = f (e) + b hence

size(f ′) = f ′out(s) = f out(s) + b = size(f) + b

Since b > 0, we get that size(f ′) > size(f)

Imdad ullah Khan (LUMS) Network Flow 9 / 1

The Ford-Fulkerson Algorithm - Analysis

Termination: We only need to show that max flow is finite (bounded)

The algorithm terminates in at most Cs = c([{s}, {s}]) steps

Let f be a flow in G and let
[
A,A

]
be any s − t cut in G , then

size(f) ≤ c
([
A,A

])

size(f) ≤ Cs = c([{s}, {s}])

In each iteration the flow increases by least an integer b ≥ 1,

hence there can be at most Cs iterations

Imdad ullah Khan (LUMS) Network Flow 10 / 1

The Ford-Fulkerson Algorithm - Analysis

Implementation: G = (V ,E , c), c : E → Z+, |V | = n, |E | = m

The Ford-Fulkerson algorithm can be implemented in O(mCs) time

Any Gf can have at most 2m edges

Gf can be constructed in O(n +m)

We can find s − t path in Gf in O(n +m) ▷ bfs or dfs from s

augment(G , f) takes O(n) ▷ incr/dec per edge of P

At most Cs iterations ▷ flow increased by ≥ 1 in each iteration

This implementation takes O(mCs) time ▷ assuming m ≥ n

Imdad ullah Khan (LUMS) Network Flow 11 / 1

Max Flow : Upper Bound

Recall the following lemma we proved earlier

Let f be a flow in G and let
[
A,A

]
be any s − t cut in G , then

size(f) ≤ c
([
A,A

])
Tightest upper bound will come from a s − t cut of minimum capacity[
A∗,A∗

]
be an s − t cut with minimum capacity ▷ min-s − t-cut

We get the corollary

size(f) ≤ c
([
A∗,A∗

])

Imdad ullah Khan (LUMS) Network Flow 12 / 1

The Ford-Fulkerson Algorithm - Optimality

Let
[
A∗,A∗

]
be any s − t cut. By definition we have

size(f) = f out(s) = f out(s) +
∑

s ̸=v∈A

(
f out(v)− f in(v)

)
just adding 0’s

= f out(s) +
∑

s ̸=v∈A
f out(v)−

∑
s ̸=v∈A

f in(v)

= f out(A)− f in(A)

A A

s
t

size(f) =f out(A)− f in(A)

size(f) =f in(A) − f out(A)

Imdad ullah Khan (LUMS) Network Flow 13 / 1

The Ford-Fulkerson Algorithm - Optimality

If f is a flow such that there is no s − t path in Gf , then there is a s − t
cut

[
A∗,A∗

]
in G , such that size(f) = c

([
A∗,A∗

])
Construct such a cut. Let A∗ = R(s) in Gf ▷ so A∗ = R(s)[
A∗,A∗

]
is s − t cut, s ∈ A∗. No s − t path in Gf =⇒ t ∈ A∗

We show that for e = xy , x ∈ A∗, y ∈ A∗, we have fe = ce

If fe < ce , then xy ∈ Gf with c ′e = fe − ce > 0. But then y ∈ A∗

▷ All edges outgoing form A∗ are saturated (no capacity left)

Similarly for e = uv , u ∈ A∗ and v ∈ A∗, we have fe = 0

If fe > 0, then vu ∈ Gf with c ′vu = fe > 0. But then u ∈ A∗

▷ All edges incoming to A∗ are completely unused

size(f) = f out(A∗)−f in(A∗) =
∑

e outgoing from A∗

ce−
∑

e incoming to A∗

0 = c
([
A∗,A∗

])
Imdad ullah Khan (LUMS) Network Flow 14 / 1

The Ford-Fulkerson Algorithm: Max-Flow-Min-Cut

Max-Flow-Min-Cut Theorem

If f is a flow with a corresponding cut
[
A∗,A∗

]
(size(f) = c

([
A∗,A∗

])
),

then f is a maximum flow and
[
A∗,A∗

]
is a minimum cut

Let f be a flow in G and let
[
A,A

]
be any s − t cut in G , then

size(f) ≤ c
([
A,A

])
Immediate corollary to the above Lemma

If there is flow of larger size than f

Size of that flow is larger than the cut c
([
A∗,A∗

])
A contradiction to the Lemma

Similarly a cut of smaller capacity than
[
A∗,A∗

]
contradicts the Lemma

Imdad ullah Khan (LUMS) Network Flow 15 / 1

The Ford-Fulkerson Algorithm - Optimality

Theorem

The Ford-Fulkerson algorithm returns a maximum flow

Proof:

It returns a flow f such that Gf has no s − t path

By the above theorem there is a cut with capacity equal to size(f)

Hence by the Theorem f is optimal

Imdad ullah Khan (LUMS) Network Flow 16 / 1

The Ford-Fulkerson Algorithm - Min Cut

Lemma

Given a maximum flow f in a network G , we can compute a minimum
s − t cut in G in O(m) steps

Proof:

This minimum cut is given as a bonus

1 Run a DFS or BFS in Gf to find R(s)

2 [R(s),R(s)] is a min-cut

3 Gf can be computed in O(n +m) = O(m)

A bfs or dfs in Gf takes at most O(n +m) = O(m) time

Imdad ullah Khan (LUMS) Network Flow 17 / 1

