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Max Flow : Problem Formulation

Input: A flow network G = (V ,E , c), c : E → R+

s ∈ V a source and t ∈ V a sink

f : E → R+ (fe = f (e)) is a flow if it satisfies

1 capacity constraints ∀ e ∈ E : 0 ≤ fe ≤ ce

2 flow conservation constraints ∀ v ∈ V , v ̸= s, t f out(v) = f in(v)

size(f ) = f out(s) = f in(t)

Output: A flow f of maximum size

Let f be a flow in G and let
[
A,A

]
be any s − t cut in G , then

size(f ) ≤ c
([
A,A

])
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Max Flow : Adding Flow along a path

Greedy Algorithm – build up flow little bit at a time

1 Start with a 0 flow

▷ Note: the flow f with fe = 0 for all e ∈ E satisfies both constraints

2 Add more flow to f via a s − t path

tvkv3v2v1s
c0 c1 c2 c3 ck

bottleneck, b = mini ci

Adding flow along a path keeps flow conservation constraints satisfied

tvkv3v2v1s
b ≤ c0 b ≤ c1 b ≤ c2 b ≤ c3 b ≤ ck

bottleneck, b = mini ci

Adding flow equal to path-bottleneck keeps capacity constraints satisfied

The two ensure any intermediate flow by greedy algorithm is valid
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Max Flow : Problems with the algorithm

Consider the flow network – all edge capacity are 1

The max flow clearly is of size 2

If the greedy algorithm adds a flow of size 1 via the s − t path s, a, b, t

No s − t path in the remaining graph

s

a

b

t

The issue is not the hop length of paths
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Max Flow : Fix for the algorithm

A more general way of pushing further flow is to

1 Push forward flow on edges where some capacity is remaining

2 Cancel existing flow on edges ▷ pushing flow backward

a

b

ts

a

b

ts
Cancellation

a

b

t

1

1

1

1

1− 1 = 0
s

Add one unit of flow via the s, a, b, t path

Add one unit of flow via the s, b, a, t path

▷ ba /∈ E , but we cancel the existing flow on edge ab ∈ E

Add the red and blue flows
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Max Flow : Residual Network

Cancellation of existing flows on edges (if need be) is the right framework
to add more flow

Residual network

Porvides, a systematic way to search for the right places to cancel
flow and adding more flow

Associated with a flow f , it encodes “places” where f can be
increased (by adding new flows and canceling existing flows)
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Max Flow : Residual Network

Given network G and flow f , the residual graph Gf of G w.r.t f is

Vertex set of Gf is the same as that of G

Forward edges: For each e = uv of G on which fe < ce , there is an
edge e = uv in Gf with capacity ce − fe > 0

Backward edges: For each edge e = uv of G on which fe > 0, there
is an edge e ′ = vu in Gf with capacity fe
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Flow network with flow shown in red The corresponding residual network

▷ For any G and f , Gf has at most twice as many edges as G
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Max Flow: Augmenting Path

An augmenting path is a simple s − t path in the residual graph Gf

▷ It is used to augment the flow f

For an augmenting path P in Gf , bottleneck(P, f ) = mine∈P c ′e
▷ the minimum residual capacity of any edge on P in Gf

Note c ′e is the residual capacity of the edge e (its capacity in Gf )

Algorithm augment(P, f ) augment flow using a path P in Gf

b ← bottleneck(P, f )

f ′ ← f
for each edge e = uv ∈ P do
if e is a forward edge then

f ′e ← fe + b

else if e is a backward edge then

f ′vu ← fvu − b
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Max Flow : Correctness of augment(P , f )

The output f ′ of augment(P, f ) is a flow

f ′ satisfies capacity constraints ∀ e ∈ E : 0 ≤ f ′e ≤ c ′e

tvkv3v2v1s
b ≤ c0 b ≤ c1 b ≤ c2 b ≤ c3 b ≤ ck

bottleneck, b = mini ci

Case 1: e is not on P, f ′e = fe

Case 2: If e ∈ P is a forward edge (c ′e = ce − fe), then f ′e = fe + b

Since 0 < b ≤ c ′e = ce − fe

We have 0 ≤ fe ≤ f ′e = fe + b ≤ fe + ce − fe = ce

Case 3: If e ∈ P is a backward edge (c ′e = fe), then f ′e = fe − b

Since 0 < b ≤ c ′e = fe

We have ce ≥ fe ≥ f ′e = fe − b ≥ fe − fe = 0
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Max Flow : Correctness of augment(P , f )

The output f ′ of augment(P, f ) is a flow

f ′ satisfies the flow conservation ∀ v ∈ V , v ̸= s, t f ′out(v) = f ′in(v)

tvkv2v1s x y
ein eout

v

Case 1: ein is forward edge and eout is forward edge
f ′out(v) = f out(v) + b as f ′vy = fvy + b and

f ′in(v) = f in(v) + b as f ′xv = fxv + b
Hence change in in-flow to v = change in out-flow from v

Case 2: ein is reverse edge and eout is forward edge
f ′out(v) = f out(v)− b + b as f ′vx = fvx − b (since vx is a reverse edge)
and f ′vy = fvy + b (since vy is a forward edge)

Hence f ′out(v) = f ′in(v)

Case 3: ein is reverse edge and eout is reverse edge

Case 4: ein is forward edge and eout is reverse edge
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