Network Flow

- Maximum Flow: Problem Formulation
- Maximum Flow: Upper Bound
- Maximum Flow: Adding flow along paths
- Residual Network and Augmenting Path
- Ford-Fulkerson Algorithm Max-Flow-Min-Cut Theorem
- Edmond-Karp Algorithm
- Maximum Flow: Variants and Applications

Imdad ullah Khan

Max Flow : Problem Formulation

Input: A flow network $G = (V, E, c), c : E \to \mathbb{R}^+$

 $s \in V$ a source and $t \in V$ a sink

$$f: E \to \mathbb{R}^+ (f_e = f(e)) \text{ is a flow if it satisfies}$$

1 capacity constraints $\forall e \in E : 0 \le f_e \le c_e$
2 flow conservation constraints $\forall v \in V, v \ne s, t \quad f^{out}(v) = f^{in}(v)$

$$size(f) = f^{out}(s) = f^{in}(t)$$

Output: A flow *f* of maximum size

Let f be a flow in G and let $[A,\overline{A}]$ be any s - t cut in G, then $size(f) \leq c([A,\overline{A}])$

There is no known divide-and-conquer or dynamic programming algorithm for max-flow

We try a greedy strategy - build up flow little bit at a time

1 Start with a 0 flow

 \triangleright Note: the flow f with $f_e = 0$ for all $e \in E$ satisfies both constraints

2 Add more flow to f via a s - t path

Consider the flow network – all edge capacity are 1

Consider the flow network - all edge capacity are 1 Add flow of size 1 via the s - t path s, a, d, t

Consider the flow network - all edge capacity are 1 Add flow of size 1 via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, t

Consider the flow network - all edge capacity are 1 Add flow of size 1 via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, tAdd flow of size 1 via the s - t path s, c, e, t

Consider the flow network - all edge capacity are 1 Add flow of size 1 via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, tAdd flow of size 1 via the s - t path s, c, e, t

There is an s - t cut of capacity 3, hence this flow is maximum possible

Consider the flow network - with not all capacities = 1

Consider the flow network – with not all capacities = 1 Add flow of size 1 = path-bottleneck via the s - t path s, a, d, t

Consider the flow network – with not all capacities = 1 Add flow of size 1 = path-bottleneck via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, t

Consider the flow network – with not all capacities = 1 Add flow of size 1 = path-bottleneck via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, tAdd flow of size 1 via the s - t path s, c, e, t

Consider the flow network – with not all capacities = 1 Add flow of size 1 = path-bottleneck via the s - t path s, a, d, tAdd flow of size 1 via the s - t path s, b, f, tAdd flow of size 1 via the s - t path s, c, e, t

There is an s - t cut of capacity 3, hence this flow is maximum possible

Max Flow : Adding Flow along a path

Adding flow along a path ensures that flow conservation constraints remain satisfied

Adding a flow along a path equal to the bottleneck of the path doesn't violate the capacity constraints

These two facts ensure that in any intermediate step of such a greedy algorithm the flow indeed is a valid flow