Algorithms

Network Flow

■ Maximum Flow: Problem Formulation

- Maximum Flow: Upper Bound
- Maximum Flow: Adding flow along paths

■ Residual Network and Augmenting Path
■ Ford-Fulkerson Algorithm - Max-Flow-Min-Cut Theorem

- Edmond-Karp Algorithm

■ Maximum Flow: Variants and Applications

Imdad ullah Khan

Max Flow: Problem Formulation

Input: A flow network $G=(V, E, c), c: E \rightarrow \mathbb{R}^{+}$ $s \in V$ a source and $t \in V$ a sink
$f: E \rightarrow \mathbb{R}^{+}\left(f_{e}=f(e)\right)$ is a flow if it satisfies
1 capacity constraints $\forall e \in E: 0 \leq f_{e} \leq c_{e}$
2 flow conservation constraints $\forall v \in V, v \neq s, t \quad f^{\text {out }}(v)=f^{\text {in }}(v)$

$$
\operatorname{size}(f)=f^{\text {out }}(s)=f^{\text {in }}(t)
$$

Output: A flow f of maximum size

Max Flow: Upper Bound

Consider the cut $[\{s\}, \overline{\{s\}}]$
Any flow generated from s has to go through one of the cut edges
Hence no flow can be of size bigger than $3+3+4=10$

Max Flow: Upper Bound

The same is true for nay cut, Consider the cut $[\{s, a, b, c\},\{d, e, t\}]$
Any flow generated from s has to go through one of the cut edges
Hence no flow can be of size bigger than $2+1+5=8$
This is a tighter bound than the one we got from $[\{s\}, \overline{\{s\}}]$

Max Flow: Upper Bound

The same is true for nay cut, Consider the cut $[\overline{\{t\}},\{t\}]$
Any flow generated from s has to go through one of the cut edges
Hence no flow can be of size bigger than $2+5=7$
This is a tighter bound than the one we got from $[\{s, a, b, c\},\{d, e, t\}]$

Max Flow: Upper Bound

All cuts have s on one side and t on the other side

$s-t$ cut

$A \subset V$, an $s-t$ cut, $[A, \bar{A}]$, is a cut in G with $s \in A$ and $t \in \bar{A}$ content...

Capacity of an $s-t$ cut: sum of capacities of edges going from A to \bar{A}

$$
c([A, \bar{A}])=\sum_{e \text { outgoing from } A} c_{e}
$$

Max Flow: Upper Bound

Let f be a flow in G and let $[A, \bar{A}]$ be any $s-t$ cut in G, then

$$
\operatorname{size}(f) \leq c([A, \bar{A}])
$$

Proof: Let $[A, \bar{A}]$ be any cut. By definition we know that

$$
\begin{aligned}
\operatorname{size}(f) & =f^{\text {out }}(s)=f^{\text {out }}(s)+\sum_{s \neq v \in A}\left(f^{\text {out }}(v)-f^{\text {in }}(v)\right) \quad \text { just adding } 0^{\prime} \\
& =f^{\text {out }}(s)+\sum_{s \neq v \in A} f^{\text {out }}(v)-\sum_{s \neq v \in A} f^{\text {in }}(v) \\
& =f^{\text {out }}(A)-f^{\text {in }}(A) \\
& =\sum_{e \text { outgoing from } A} f_{e}-\sum_{e \text { incoming to } A} f_{e} \quad \text { flows on other edges canc } \\
& \leq \sum_{e \text { outgoing from } A} c_{e}-\sum_{e \text { incoming to } A} f_{e} \leq \sum_{e \text { outgoing from } A} c_{e}=c([A, \bar{A}])
\end{aligned}
$$

Max Flow: Upper Bound

Let f be a flow in G and let $[A, \bar{A}]$ be any $s-t$ cut in G, then

$$
\operatorname{size}(f) \leq c([A, \bar{A}])
$$

Tightest upper bound will come from a $s-t$ cut of minimum capacity
$\left[A^{*}, \overline{A^{*}}\right]$ be an $s-t$ cut with minimum capacity
\triangleright min-s $-t$-cut
We get the corollary

$$
\operatorname{size}(f) \leq c\left(\left[A^{*}, \overline{A^{*}}\right]\right)
$$

