Algorithms

Intractable Problems

- Clique
- Independent Set
- Vertex Cover
- Set Cover
- Set Packing
- Satisfiability Problem
- Hamiltonian Cycle and Path

- Traveling Salesman Problem
- Graph Coloring
- Circuit Satisfiability
- Knapsack
- Subset Sum
- Prime and Factor
- Partition

IMDAD ULLAH KHAN

KNAPSCAK and SUBSET-SUM Problem

- Given a set $U = \{a_1, a_2, \dots, a_n\}$ of objects
- A weight function $w: U \to \mathbb{Z}^+$

$$\triangleright w_i = w(a_i)$$

■ A value function $v: U \to \mathbb{R}^+$

 $\triangleright v_i = v(a_i)$

■ And a positive integer *C*

KNAPSACK(U, w, v, C, k) problem:

Is there a
$$S \subset U$$
 such that $\sum_{a_i \in S} w_i \leq C$ and $\sum_{a_i \in S} v_i = k$?

SUBSET-SUM(
$$U, w, C$$
) problem: Is there a $S \subset U$ such that $\sum_{a_i \in S} w_i = C$?

Number Theory Problems

PRIME(n) problem: Is the integer n a prime?

COMPOSITE(n) problem: Is the integer n a composite number?

FACTOR(n, k) problem: Is there a factor d of n such that $2 \le d \le k$?

These problems are the building blocks of public key cryptography

The PARTITION Problem

- Given a set $U = \{a_1, a_2, ..., a_n\}$ of n positive integers
- Partition U into two subsets U_1 and U_2

▷ balanced partition

- Also called the number bipartition problem
- If $\Big|\sum_{a \in U_1} a \sum_{a \in U_2} a\Big| = k$, then it is called *k*-imbalanced bipartition

PARTITION(U, k) problem: Is there a k-imbalanced biparition of U?

Childhood team selection actually was a greedy algorithm for bipartition

Multiway partition problem is an interesting extension of this problem

PARTITION Problem: Applications

Multiprocessor Scheduling

Assign tasks to two identical processors to minimize the MAKESPAN MAKESPAN is the latest finishing processor

- U is the set of tasks
- lacktriangle A balanced bipartition of U (tasks in each part to be run on one processor) minimizes the makespan

For k processors, it becomes the k-way partition problem

PARTITION Problem: Applications

Scoring Based Voting

Three candidates A, B, C and voters with weighted votes. Each voter votes to veto a candidate. The candidate with the smallest total weight of vetoes wins.

We have a subset of n voters with weights a_1, a_2, \ldots, a_n , who wants to select candidate A. How should they cast their vetoes to ensure A wins.

- $U = \{a_1, a_2, \dots, a_n\}$
- U wants to elect A, they should "bipartition" their vetoes for B and C
- This will maximize the minimum vetoes for B and C