Algorithms

Intractable Problems

- Clique
- Independent Set

■ Vertex Cover
■ Set Cover

- Set Packing
- Satisfiability Problem

■ Hamiltonian Cycle and Path

- Traveling Salesman Problem

■ Graph Coloring

- Circuit Satisfiability

■ Knapsack

- Subset Sum
- Prime and Factor
- Partition

knapscak and subset-sum Problem

■ Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of objects

- A weight function $w: U \rightarrow \mathbb{Z}^{+}$ $\triangleright w_{i}=w\left(a_{i}\right)$
- A value function $v: U \rightarrow \mathbb{R}^{+}$
$\triangleright v_{i}=v\left(a_{i}\right)$
- And a positive integer C

Knapsack (U, w, v, C, k) problem:
Is there a $S \subset U$ such that $\sum_{a_{i} \in S} w_{i} \leq C$ and $\sum_{a_{i} \in S} v_{i}=k$?
$\operatorname{SUBSET-SUM}(U, w, C)$ problem: Is there a $S \subset U$ such that $\sum_{a_{i} \in S} w_{i}=C ?$

Number Theory Problems

$\operatorname{PRIME}(n)$ problem: Is the integer n a prime?

COMPOSITE (n) problem: Is the integer n a composite number?
$\operatorname{FACTOR}(n, k)$ problem: Is there a factor d of n such that $2 \leq d \leq k$?

These problems are the building blocks of public key cryptography

The Partition Problem

■ Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n positive integers

- Partition U into two subsets U_{1} and U_{2}
- $\sum_{a \in U_{1}} a=\sum_{a \in U_{2}} a$
\triangleright balanced partition
- Also called the number bipartition problem

■ If $\left|\sum_{a \in U_{1}} a-\sum_{a \in U_{2}} a\right|=k$, then it is called k-imbalanced bipartition PARTITION (U, k) problem: Is there a k-imbalanced biparition of U ?

Childhood team selection actually was a greedy algorithm for bipartition
Multiway partition problem is an interesting extension of this problem

Partition Problem: Applications

Multiprocessor Scheduling
Assign tasks to two identical processors to minimize the MAKESPAN
MAKESPAN is the latest finishing processor

- U is the set of tasks
- A balanced bipartition of U (tasks in each part to be run on one processor) minimizes the makespan

For k processors, it becomes the k-way partition problem

Partition Problem: Applications

Scoring Based Voting

Three candidates A, B, C and voters with weighted votes. Each voter votes to veto a candidate. The candidate with the smallest total weight of vetoes wins.

We have a subset of n voters with weights $a_{1}, a_{2}, \ldots, a_{n}$, who wants to select candidate A. How should they cast their vetoes to ensure A wins.

■ $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
■ U wants to elect A, they should "bipartition" their vetoes for B and C
■ This will maximize the minimum vetoes for B and C

