Algorithms

Dynamic Programming

m All Pairs Shortest Paths Problem
m APSP: Dynamic Programming Formulation

m Floyd Warshall Algorithm

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 1/16



APSP Problem

Input: A weighted graph G = (V, E, w)
Output: Shortest paths from every vertex u € V to every other v € V

The APSP problem can be represented by a n x n matrix D = [dj;], where
dj = d(uj,u;) for i,j=1,...,n, and n is the number of vertices in V.

o A~ w| s~

3

2
00

0
00

AW NO
g8golrm
B 8 ow|m™

The goal is to compute the matrix D efficiently.

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 2/16



APSP: Dynamic Programming Formulation

Dynamic programming idea: For any pair of vertices (/, ), consider all
possible intermediate vertices k that lie on a shortest path from i to j

Fix some ordering on vertices

Let dlg-k) denote the length of a shortest path from i to j that only uses
vertices {1,2,..., k} as intermediate vertices

Then we have the following recurrence relation:
d) = min{d{ ™V, di "V + a7V}
(0)

The base case is dij = wjj, where wj; is the weight of the edge (i,}), or
oo if there is no such edge

(n)

The final solution is dl-j , Where n is the number of vertices in the graph

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP

3/16



Floyd-Warshall Algorithm: Implementation with 3d arrays

Floyd Warshall algorithm can be implemented with a 3-d (n x n x n) array
A to store the intermediate results

m A[/][j][K] represents the shortest path from i to j using only vertices 1
to k as intermediate vertices

m Initially A[/][/][0] is the same as the adjacency matrix of the graph,
with oo representing no edge between two vertices

m Finally A[/][j][n] gives the shortest path between all pairs of vertices

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 4/16



Floyd-Warshall Algorithm: Implementation with 3d arrays

Algorithm 1 Floyd Warshall Algorithm using 3d Matrix
n < number of vertices in G
A < new n X n X n matrix
for i=1to ndo
for j=1tondo
Al][/][0] = wjj > where wj; is the weight of the edge (i, ), or oo if
there is no such edge
for k =1 to ndo

for i=1to ndo
for j=1to ndo

AlUI[K] = min{A[/][j][k — 1], A[i][k][k — 1] + A[k]U][k — 1]}
return A[i][/][n] for all i,/

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 5/16



Floyd-Warshall Algorithm: Implementation with 3d arrays

m The time complexity of the Floyd Warshall algorithm with a 3d
matrix is O(n3)

m Because we have three nested loops, each iterating from 1 to n, and
each iteration performs a constant amount of work

m The space complexity of the Floyd Warshall algorithm using a 3d
matrix is also O(n®)

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 6/16



Floyd-Warshall Algorithm: Implementation with 2d array

Floyd Warshall algorithm can also be implemented with a 2-d (n x n)
array D to store the intermediate results

m DIi][j] represents the shortest path from i to j using any intermediate
vertices

m Initially D is the same as the adjacency matrix of the graph, with co
representing no edge between two vertices

m Finally D gives the shortest path between all pairs of vertices

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 7/16



Floyd-Warshall Algorithm: Implementation with 2d array

Algorithm 2 Floyd Warshall Algorithm using 2d Matrix
n < number of vertices in G

D < matrix of edge weights of G
for k =1to ndo
for i=1to ndo
for j=1to ndo

D[] < min{D[i][j], D[i][k] + DI]U1}

return D

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 8/16



Floyd-Warshall Algorithm: Implementation with 2d array

m The time complexity of the Floyd Warshall algorithm using a 2d
matrix is O(n3)

m Because we have three nested loops, each iterating from 1 to n, and
each iteration performs a constant amount of work

m The space complexity of the Floyd Warshall algorithm using a 2d
matrix is O(n?)

m Because we need to store n? elements in the matrix D

m This is an improvement over the 3d matrix implementation, which
requires O(n3) space

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 9/16



