
Algorithms

Dynamic Programming

All Pairs Shortest Paths Problem

APSP: Dynamic Programming Formulation

Floyd Warshall Algorithm

Imdad ullah Khan

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 1 / 16



APSP Problem

Input: A weighted graph G = (V ,E ,w)
Output: Shortest paths from every vertex u ∈ V to every other v ∈ V

The APSP problem can be represented by a n × n matrix D = [dij ], where
dij = d(ui , uj) for i , j = 1, . . . , n, and n is the number of vertices in V .

2

3

1

4

1 2

43

1 2 3 4

1 0 3 2 3
2 ∞ 0 ∞ 4
3 ∞ ∞ 0 1
4 ∞ ∞ ∞ 0

The goal is to compute the matrix D efficiently.

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 2 / 16



APSP: Dynamic Programming Formulation

Dynamic programming idea: For any pair of vertices (i , j), consider all
possible intermediate vertices k that lie on a shortest path from i to j

Fix some ordering on vertices

Let d
(k)
ij denote the length of a shortest path from i to j that only uses

vertices {1, 2, . . . , k} as intermediate vertices

Then we have the following recurrence relation:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

The base case is d
(0)
ij = wij , where wij is the weight of the edge (i , j), or

∞ if there is no such edge

The final solution is d
(n)
ij , where n is the number of vertices in the graph

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 3 / 16



Floyd-Warshall Algorithm: Implementation with 3d arrays

Floyd Warshall algorithm can be implemented with a 3-d (n× n× n) array
A to store the intermediate results

A[i ][j ][k] represents the shortest path from i to j using only vertices 1
to k as intermediate vertices

Initially A[i ][j ][0] is the same as the adjacency matrix of the graph,
with ∞ representing no edge between two vertices

Finally A[i ][j ][n] gives the shortest path between all pairs of vertices

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 4 / 16



Floyd-Warshall Algorithm: Implementation with 3d arrays

Algorithm 1 Floyd Warshall Algorithm using 3d Matrix

n← number of vertices in G
A← new n × n × n matrix
for i = 1 to n do
for j = 1 to n do

A[i ][j ][0]← wij ▷ where wij is the weight of the edge (i , j), or ∞ if
there is no such edge

for k = 1 to n do
for i = 1 to n do
for j = 1 to n do

A[i ][j ][k]← min{A[i ][j ][k − 1],A[i ][k][k − 1] + A[k][j ][k − 1]}
return A[i ][j ][n] for all i , j

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 5 / 16



Floyd-Warshall Algorithm: Implementation with 3d arrays

The time complexity of the Floyd Warshall algorithm with a 3d
matrix is O(n3)

Because we have three nested loops, each iterating from 1 to n, and
each iteration performs a constant amount of work

The space complexity of the Floyd Warshall algorithm using a 3d
matrix is also O(n3)

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 6 / 16



Floyd-Warshall Algorithm: Implementation with 2d array

Floyd Warshall algorithm can also be implemented with a 2-d (n × n)
array D to store the intermediate results

D[i ][j ] represents the shortest path from i to j using any intermediate
vertices

Initially D is the same as the adjacency matrix of the graph, with ∞
representing no edge between two vertices

Finally D gives the shortest path between all pairs of vertices

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 7 / 16



Floyd-Warshall Algorithm: Implementation with 2d array

Algorithm 2 Floyd Warshall Algorithm using 2d Matrix

n← number of vertices in G

D ← matrix of edge weights of G

for k = 1 to n do
for i = 1 to n do
for j = 1 to n do

D[i ][j ]← min{D[i ][j ],D[i ][k] + D[k][j ]}
return D

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 8 / 16



Floyd-Warshall Algorithm: Implementation with 2d array

The time complexity of the Floyd Warshall algorithm using a 2d
matrix is O(n3)

Because we have three nested loops, each iterating from 1 to n, and
each iteration performs a constant amount of work

The space complexity of the Floyd Warshall algorithm using a 2d
matrix is O(n2)

Because we need to store n2 elements in the matrix D

This is an improvement over the 3d matrix implementation, which
requires O(n3) space

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 9 / 16


