Algorithms

Dynamic Programming

■ All Pairs Shortest Paths Problem

- APSP: Dynamic Programming Formulation

■ Floyd Warshall Algorithm

Imdad ullah Khan

APSP Problem

Input: A weighted graph $G=(V, E, w)$
Output: Shortest paths from every vertex $u \in V$ to every other $v \in V$

The APSP problem can be represented by a $n \times n$ matrix $D=\left[d_{i j}\right]$, where $d_{i j}=d\left(u_{i}, u_{j}\right)$ for $i, j=1, \ldots, n$, and n is the number of vertices in V.

	1	2	3	4
1	0	3	2	3
2	∞	0	∞	4
3	∞	∞	0	1
4	∞	∞	∞	0

The goal is to compute the matrix D efficiently.

APSP: Dynamic Programming Formulation

Dynamic programming idea: For any pair of vertices (i, j), consider all possible intermediate vertices k that lie on a shortest path from i to j

Fix some ordering on vertices
Let $d_{i j}^{(k)}$ denote the length of a shortest path from i to j that only uses vertices $\{1,2, \ldots, k\}$ as intermediate vertices

Then we have the following recurrence relation:

$$
d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
$$

The base case is $d_{i j}^{(0)}=w_{i j}$, where $w_{i j}$ is the weight of the edge (i, j), or ∞ if there is no such edge

The final solution is $d_{i j}^{(n)}$, where n is the number of vertices in the graph

Floyd-Warshall Algorithm: Implementation with 3d arrays

Floyd Warshall algorithm can be implemented with a 3-d ($n \times n \times n$) array A to store the intermediate results

■ $A[i][j][k]$ represents the shortest path from i to j using only vertices 1 to k as intermediate vertices

- Initially $A[i][j][0]$ is the same as the adjacency matrix of the graph, with ∞ representing no edge between two vertices

■ Finally $A[i][j][n]$ gives the shortest path between all pairs of vertices

Floyd-Warshall Algorithm: Implementation with 3d arrays

Algorithm 1 Floyd Warshall Algorithm using 3d Matrix
$n \leftarrow$ number of vertices in G
$A \leftarrow$ new $n \times n \times n$ matrix
for $i=1$ to n do

$$
\text { for } j=1 \text { to } n \text { do }
$$

$A[i][j][0] \leftarrow w_{i j} \triangleright$ where $w_{i j}$ is the weight of the edge (i, j), or ∞ if there is no such edge
for $k=1$ to n do

$$
\text { for } i=1 \text { to } n \text { do }
$$

$$
\text { for } j=1 \text { to } n \text { do }
$$

$$
A[i][j][k] \leftarrow \min \{A[i][j][k-1], A[i][k][k-1]+A[k][j][k-1]\}
$$

return $A[i][j][n]$ for all i, j

Floyd-Warshall Algorithm: Implementation with 3d arrays

■ The time complexity of the Floyd Warshall algorithm with a 3d matrix is $O\left(n^{3}\right)$

- Because we have three nested loops, each iterating from 1 to n, and each iteration performs a constant amount of work
- The space complexity of the Floyd Warshall algorithm using a 3d matrix is also $O\left(n^{3}\right)$

Floyd-Warshall Algorithm: Implementation with 2d array

Floyd Warshall algorithm can also be implemented with a 2-d ($n \times n$) array D to store the intermediate results

- $D[i][j]$ represents the shortest path from i to j using any intermediate vertices
- Initially D is the same as the adjacency matrix of the graph, with ∞ representing no edge between two vertices
- Finally D gives the shortest path between all pairs of vertices

Floyd-Warshall Algorithm: Implementation with 2d array

Algorithm 2 Floyd Warshall Algorithm using 2d Matrix
$n \leftarrow$ number of vertices in G
$D \leftarrow$ matrix of edge weights of G
for $k=1$ to n do
for $i=1$ to n do
for $j=1$ to n do
$D[i][j] \leftarrow \min \{D[i][j], D[i][k]+D[k][j]\}$
return D

Floyd-Warshall Algorithm: Implementation with 2d array

■ The time complexity of the Floyd Warshall algorithm using a 2 d matrix is $O\left(n^{3}\right)$

- Because we have three nested loops, each iterating from 1 to n, and each iteration performs a constant amount of work
- The space complexity of the Floyd Warshall algorithm using a 2d matrix is $O\left(n^{2}\right)$
- Because we need to store n^{2} elements in the matrix D

■ This is an improvement over the 3d matrix implementation, which requires $O\left(n^{3}\right)$ space

