Algorithms

Dynamic Programming

m All Pairs Shortest Paths Problem
m APSP: Dynamic Programming Formulation

m Floyd Warshall Algorithm

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 1/16

APSP Problem

Input: A weighted graph G = (V, E, w)
Output: Shortest paths from every vertex u € V to every other v € V

The APSP problem can be represented by a n x n matrix D = [dj;], where
dj = d(uj,u;) for i,j=1,...,n, and n is the number of vertices in V.

o A~ w| s~

3

2
00

0
00

AW NO
g8golrm
B 8 ow|m™

The goal is to compute the matrix D efficiently.

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 2/16

APSP: Naive Approach

On G = (V, E,w), run a SSSP algorithm from each vertex as source

For non-negative weights, use Dijkstra's algorithm with a priority queue
m O(n(m + nlogn)) = O(n?log n+ nm) if G is given as adjacency list
m O(n®logn) if G is given as adjacency matrix

If negative weights are allowed, Bellman-Ford's algorithm
m O(n’m) if G is given as adjacency list

m O(n*) if G is given as adjacency matrix

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 3/16

APSP: Dynamic Programming Formulation

Dynamic programming idea: For any pair of vertices (/,), consider all
possible intermediate vertices k that lie on a shortest path from i to j

Fix some ordering on vertices

Let dlg-k) denote the length of a shortest path from i to j that only uses
vertices {1,2,..., k} as intermediate vertices

Then we have the following recurrence relation:
d) = min{d{ ™V, di "V + a7V}
(0)

The base case is dij = wjj, where wj; is the weight of the edge (i,}), or
oo if there is no such edge

(n)

The final solution is dl-j , Where n is the number of vertices in the graph

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP

4/16

APSP: Dynamic Programming Formulation

The values of dflg) for
different values of k
k |1 2 3 45
df [0 9 5 5 5

m The shortest path from 1 to 5 is 5, which is achieved when k = 3,
k=4or k=5

m The corresponding shortest path is (1,3,4,5).

m Note that d{g) does not change when k > 4, since vertex 5 is not

used as an intermediate vertex.

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 5/16

APSP: Floyd-Warshall Algorithm

Algorithm 1 Floyd-Warshall Algorithm G = (V, E, w)

n < number of vertices in G

D© «+ matrix of edge weights of G
for k=1tondo
D) < new n x n matrix

for i =1to ndo
for j =1 to ndo

k . k—1 k—1 k—1
DIS-) m|n{D,-(j), Di(k) 4+ D,((j)}

return D("

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 6/16

APSP: Floyd-Warshall Algorithm

p(0)

© N U A WN
©RX8 Q8L Y NVWoO|
QB oosrown
B8R L—rornw
R wnmnorouoR|s
T orony oo
oot ¥ ¥R AN
oo ~NR8 Y YR ow

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 7/16

APSP: Floyd-Warshall Algorithm

R wnvoro Qs
oo NR Rl

6
(0. @]
(0.]
(0. @]
3
4
0
6
7

ER8 Q88 ~rornw
oot ¥ ¥ Y RN
cm~NR®YEERD ©ox

©gERAINDVWOR
D8 3 ovsown

8
8

Table: matrix D) with vertex 1 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 8/16

APSP: Floyd-Warshall Algorithm

p@A|l1 2 3 4 5 6 7 8
1 0 3 2 8 9 o oo 9
2 3 0 4 5 6 oo oo 12
3 2 4 0 1 10 oo oo 11
4 8 5 1 0 2 3 oo 17
5 9 6 10 2 0 4 5 18
6 oo oo oo 3 4 0 6 7
7 o oo oo oo 5 6 0 8
8 9 12 11 17 18 7 8 O

Table: matrix D@ with vertex 2 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 9/16

APSP: Floyd-Warshall Algorithm

p® |11 2 3 4 5 6 7 8
1 0 3 2 3 9 o oo 9
2 3 0 4 5 6 oo oo 12
3 2 4 0 1 10 oo oo 11
4 3 5 1 0 2 3 o 12
5 9 6 10 2 0 4 5 18
6 oo oo oo 3 4 0 6 7
7 o oo oo oo 5 6 0 8
8 9 12 11 12 18 7 8 O

Table: matrix D®) with vertex 3 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 10/16

APSP: Floyd-Warshall Algorithm

€

e}

O

12
11
12
14
7
8
0

OO\ICT\U‘I-h(A)I\)I—‘Dr_: -

EFR rwrrornw

D8 wnv oo w ks
OO WO UG

N O R~ WhR OO

oot ® ¥ Y KNI~

©R W WOl
S8 oo~ wn

,_.
~

Table: matrix D) with vertex 4 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 11/16

APSP: Floyd-Warshall Algorithm

3

pG® |1 2 3 4 5 6 7 8
1 |0 3 2 3 5 6 10 9
2 |3 0 4 5 6 8 11 12
3 12 4 0 1 3 4 8 11
4 |3 5 1 0 2 3 7 12
5 |5 6 3 2 0 4 5 14
6 |6 8 4 3 4 0 6 7
7 |10 11 8 7 5 6 0 8
8 |9 12 11 12 14 7 8 0

Table: matrix D®) with vertex 5 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 12/16

APSP: Floyd-Warshall Algorithm

3

pe© |1 2 3 4 5 6 7 8
1 |0 3 2 3 5 6 10 9
2 |3 0 4 5 6 8 11 12
3 /2 4 0 1 3 4 8 11
4 |3 5 1 0 2 3 7 10
5 |5 6 3 2 0 4 5 11
6 |6 8 4 3 4 0 6 7
7 |10 11 8 7 5 6 0 8
8 |9 12 11 10 11 7 8 0

Table: matrix D) with vertex 6 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 13 /16

APSP: Floyd-Warshall Algorithm

e}

O

12
11
10
11
7
8
0

oo\1cnu14>w|\>|—n% .-
Socwnwo|lr
©® o U~ O WN
0 hwWHOANW
~NW N O G WA
oM O N WO OO

~No o whr OO
= =
©® oot~ a5~

O
= =
N =
[y
—
[y
o
-
[y

Table: matrix D(7) with vertex 7 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 14 /16

APSP: Floyd-Warshall Algorithm

3

p® |1 2 3 4 5 6 7 8
1 /0 3 2 3 5 6 10 9
2 |3 0 4 5 6 8 11 12
3 /2 4 0 1 3 4 8 11
4 |3 5 1 0 2 3 7 10
5 |5 6 3 2 0 4 5 11
6 |6 8 4 3 4 0 6 7
7 |10 11 8 7 5 6 0 8
8 |9 12 11 10 11 7 8 0

Table: matrix D®) with vertex 8 as intermediary. updated cells are red

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 15/16

APSP: Floyd-Warshall Algorithm

pD® |1 2 3 4 5 6 7 8 8 -
1170 3 2 3 5 6 10 9 = D(®) gives the shortest
2 3 0 4 5 6 8 11 12 path between all pairs
3 2 4 mm 3 4 8 1l m distance from 1 to 7 is
4 3 5 1 0 2 3 7 10 .
5 5 6 3 2 0 4 5 11 10, achieved by path
6 |6 8 4 3 4 0 6 7 (1,2,5,7)
7 10 11 8 7 5 6 0 8 : :
8 o 12 11 10 11 775 mE m distance from 3 to 6 is 4,

achieved by path (3,4, 6)
Table: matrix D®) with vertex 8 as intermediary. = distance from 8 to 1 is 9

updated cells are red achieved by path (8, 1)

IMDAD ULLAH KHAN (LUMS) Dynamic Programming VI: APSP 16 /16

