Dynamic Programming

- All Pairs Shortest Paths Problem
- APSP: Dynamic Programming Formulation
- Floyd Warshall Algorithm

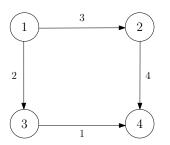
IMDAD ULLAH KHAN

APSP Problem

Input: A weighted graph G = (V, E, w)

Output: Shortest paths from every vertex $u \in V$ to every other $v \in V$

The APSP problem can be represented by a $n \times n$ matrix $D = [d_{ij}]$, where $d_{ij} = d(u_i, u_j)$ for $i, j = 1, \ldots, n$, and n is the number of vertices in V.



	1	2	3	4
1	0	3 0 ∞ ∞	2	3
2	∞	0	∞	4
3	∞	∞	0	1
4	∞	∞	∞	0

The goal is to compute the matrix D efficiently.

APSP: Naive Approach

On G = (V, E, w), run a SSSP algorithm from each vertex as source

For non-negative weights, use Dijkstra's algorithm with a priority queue

- $O(n(m + n \log n)) = O(n^2 \log n + nm)$ if G is given as adjacency list
- $O(n^3 \log n)$ if G is given as adjacency matrix

If negative weights are allowed, Bellman-Ford's algorithm

- $O(n^2m)$ if G is given as adjacency list
- $O(n^4)$ if G is given as adjacency matrix

APSP: Dynamic Programming Formulation

Dynamic programming idea: For any pair of vertices (i,j), consider all possible intermediate vertices k that lie on a shortest path from i to j

Fix some ordering on vertices

Let $d_{ij}^{(k)}$ denote the length of a shortest path from i to j that only uses vertices $\{1,2,\ldots,k\}$ as intermediate vertices

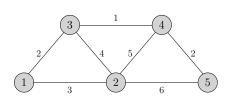
Then we have the following recurrence relation:

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

The base case is $d_{ij}^{(0)} = w_{ij}$, where w_{ij} is the weight of the edge (i,j), or ∞ if there is no such edge

The final solution is $d_{ij}^{(n)}$, where n is the number of vertices in the graph

APSP: Dynamic Programming Formulation

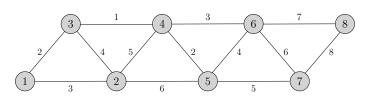


The values of $d_{15}^{(k)}$ for different values of k

- The shortest path from 1 to 5 is 5, which is achieved when k = 3, k = 4 or k = 5.
- The corresponding shortest path is (1,3,4,5).
- Note that $d_{15}^{(k)}$ does not change when k > 4, since vertex 5 is not used as an intermediate vertex.

Algorithm 1 Floyd-Warshall Algorithm G = (V, E, w)

```
n \leftarrow number of vertices in G D^{(0)} \leftarrow matrix of edge weights of G for k=1 to n do D^{(k)} \leftarrow new n \times n matrix for i=1 to n do for j=1 to n do D^{(k)}_{ij} \leftarrow \min\{D^{(k-1)}_{ij}, D^{(k-1)}_{ik} + D^{(k-1)}_{kj}\} return D^{(n)}
```



$D^{(0)}$	1	2	3	4	5	6	7	8
1	0	3	2	∞	∞	∞	∞	9
2	3	0	4	5	6	∞	∞	∞
3					∞			∞
4	∞	5	1	0	2	3	∞	∞
5	∞	6	∞	2	0	4	5	∞
6	∞	∞	∞	3	4	0	6	
7	∞	∞	∞	∞	5	6	0	8
8	9	∞	∞	∞	∞	7	8	0

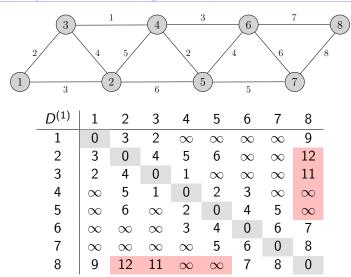


Table: matrix $D^{(1)}$ with vertex 1 as intermediary. updated cells are red

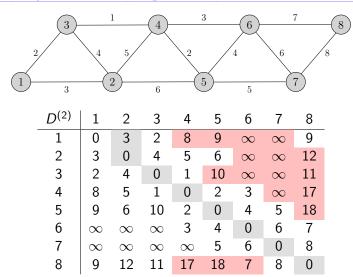


Table: matrix $D^{(2)}$ with vertex 2 as intermediary. updated cells are red

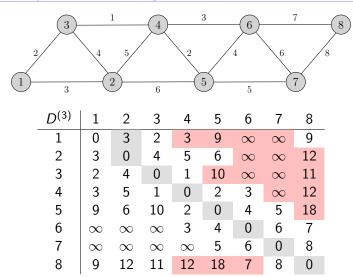


Table: matrix $D^{(3)}$ with vertex 3 as intermediary. updated cells are red

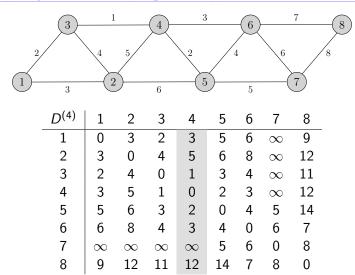


Table: matrix $D^{(4)}$ with vertex 4 as intermediary. updated cells are red

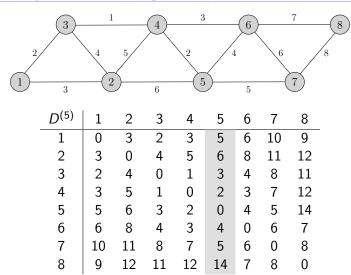


Table: matrix $D^{(5)}$ with vertex 5 as intermediary. updated cells are red

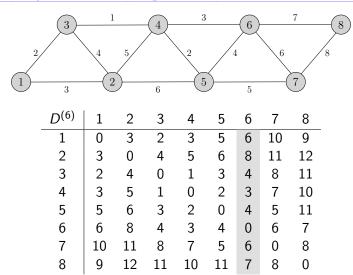


Table: matrix $D^{(6)}$ with vertex 6 as intermediary. updated cells are red

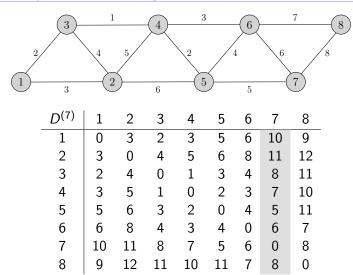


Table: matrix $D^{(7)}$ with vertex 7 as intermediary. updated cells are red

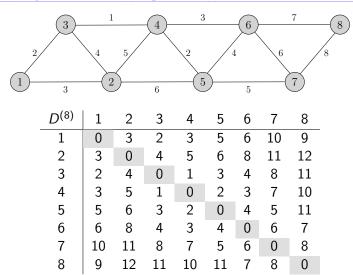
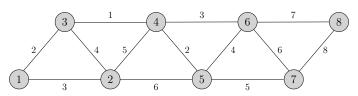


Table: matrix $D^{(8)}$ with vertex 8 as intermediary. updated cells are red



$D^{(8)}$	1	2	3	4	5	6	7	8
1	0	3	2	3	5	6	10	9
2	3	0	4	5	6	8	11	12
3	2	4	0	1	3	4	8	11
4	3	5	1	0	2	3	7	10
5	5	6	3	2	0	4	5	11
6	6	8	4	3	4	0	6	7
7	10	11	8	7	5	6	0	8
8	9	12	11	10	11	7	8	0

Table: matrix $D^{(8)}$ with vertex 8 as intermediary. updated cells are red

- D⁽⁸⁾ gives the shortest path between all pairs
- distance from 1 to 7 is 10, achieved by path (1,2,5,7)
- distance from 3 to 6 is 4, achieved by path (3, 4, 6)
- distance from 8 to 1 is 9, achieved by path (8,1)