
Algorithms

Dynamic Programming

All Pairs Shortest Paths Problem

APSP: Dynamic Programming Formulation

Floyd Warshall Algorithm

Imdad ullah Khan

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 1 / 8



Weighted Graph

Weighted Graphs (digraphs)

V : Set of vertices

E : Set of edges (directed edges)

w : cost/weight on each edge. w : E → R

▷ weights could be lengths, airfare, toll, energy

Denoted by G = (V ,E ,w)

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 2 / 8



Weighted Graph Representation

F

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BAS

C E

GD

Weighted Adjacency Matrix

S A B C D E F G

S 0 3 0 4 9 0 0 0
A 0 0 4 0 0 0 0 0
B 0 0 0 0 0 6 0 8

C
...

D
E
F
G

Weighted Adjacency Lists

S

A

B

C

D

E

F

G

C 4 D 9

B 4

E 6

A 3

G 8

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 3 / 8



Weight of Paths

Weight or length of a path p = v0, v1, . . . , vk in weighted graphs is sum of
the weights of its edges

C (p) =
k∑

i=1

w(vi−1, vi )

C(p2) = 4 + 5 + 3 + 3

C(p3) = 9 + 14

C(p1) = 3 + 4 + 8

F

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BAS

GD

EC

Three S −G paths

Unweighted graphs are weighted graphs with unit edge weights

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 4 / 8



Shortest Paths

C(p2) = 4 + 5 + 3 + 3

C(p3) = 9 + 14

C(p1) = 3 + 4 + 8

F

4

14

3

4

9
5 3

68
5

3

8

12

3

2

BAS

GD

EC

Three S −G paths

Shortest path from s to t is a path of smallest weight

Distance from s to t, d(s, t): weight of the shortest s − t path

There can be multiple shortest paths

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 5 / 8



APSP Problem

Input: A weighted graph G = (V ,E ,w)
Output: Shortest paths from every vertex u ∈ V to every other v ∈ V

The APSP problem can be represented by a n × n matrix D = [dij ], where
dij = d(ui , uj) for i , j = 1, . . . , n, and n is the number of vertices in V .

2

3

1

4

1 2

43

1 2 3 4

1 0 3 2 3
2 ∞ 0 ∞ 4
3 ∞ ∞ 0 1
4 ∞ ∞ ∞ 0

The goal is to compute the matrix D efficiently.

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 6 / 8



APSP Applications

Network routing: finding the optimal routes between any pair of
nodes in a network

Social network analysis: measuring the closeness or centrality of
nodes in a social graph

Bioinformatics: comparing the similarity of biological sequences or
structures

Computer vision: matching features or objects in images or videos

Machine learning: computing the kernel matrix or the graph
Laplacian for graph-based methods

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 7 / 8



APSP Applications

The APSP problem is also a building block for solving other graph
problems, such as:

Transitive closure: determining if there is a path between any pair of
nodes in a graph

Diameter: finding the longest shortest path in a graph

Eccentricity: finding the maximum distance from a node to any other
node in a graph

Betweenness centrality: measuring the importance of a node based on
the number of shortest paths passing through it

Imdad ullah Khan (LUMS) Dynamic Programming VI: APSP 8 / 8


