Algorithms

Dynamic Programming

■ All Pairs Shortest Paths Problem

- APSP: Dynamic Programming Formulation

■ Floyd Warshall Algorithm

Imdad ullah Khan

Weighted Graph

Weighted Graphs (digraphs)

- V : Set of vertices

■ E : Set of edges (directed edges)
■ w : cost/weight on each edge. $\quad w: E \rightarrow \mathbb{R}$
\triangleright weights could be lengths, airfare, toll, energy

- Denoted by $G=(V, E, w)$

Weighted Graph Representation

Weighted Adjacency Matrix
Weighted Adjacency Lists

	S	A	B	C	D	E	F	G
S	0	3	0	4	9	0	0	0
A	0	0	4	0	0	0	0	0
B	0	0	0	0	0	6	0	8
C	\vdots							
D								
E								
F								
G								

Weight of Paths

Weight or length of a path $p=v_{0}, v_{1}, \ldots, v_{k}$ in weighted graphs is sum of the weights of its edges

$$
C(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Three $S-G$ paths

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{p}_{1}\right)=3+4+8 \\
& \mathrm{C}\left(\mathrm{p}_{2}\right)=4+5+3+3 \\
& \mathrm{C}\left(\mathrm{p}_{3}\right)=9+14
\end{aligned}
$$

Unweighted graphs are weighted graphs with unit edge weights

Shortest Paths

Three $S-G$ paths
$\mathrm{C}\left(\mathrm{p}_{1}\right)=3+4+8$
$\mathrm{C}\left(\mathrm{p}_{2}\right)=4+5+3+3$
$\mathrm{C}\left(\mathrm{p}_{3}\right)=9+14$

Shortest path from s to t is a path of smallest weight

Distance from s to $t, \mathbf{d}(\mathbf{s}, \mathbf{t})$: weight of the shortest $s-t$ path

There can be multiple shortest paths

APSP Problem

Input: A weighted graph $G=(V, E, w)$
Output: Shortest paths from every vertex $u \in V$ to every other $v \in V$

The APSP problem can be represented by a $n \times n$ matrix $D=\left[d_{i j}\right]$, where $d_{i j}=d\left(u_{i}, u_{j}\right)$ for $i, j=1, \ldots, n$, and n is the number of vertices in V.

	1	2	3	4
1	0	3	2	3
2	∞	0	∞	4
3	∞	∞	0	1
4	∞	∞	∞	0

The goal is to compute the matrix D efficiently.

APSP Applications

■ Network routing: finding the optimal routes between any pair of nodes in a network

- Social network analysis: measuring the closeness or centrality of nodes in a social graph

■ Bioinformatics: comparing the similarity of biological sequences or structures

■ Computer vision: matching features or objects in images or videos

- Machine learning: computing the kernel matrix or the graph Laplacian for graph-based methods

APSP Applications

The APSP problem is also a building block for solving other graph problems, such as:

- Transitive closure: determining if there is a path between any pair of nodes in a graph
- Diameter: finding the longest shortest path in a graph
- Eccentricity: finding the maximum distance from a node to any other node in a graph
- Betweenness centrality: measuring the importance of a node based on the number of shortest paths passing through it

