Algorithms

Dynamic Programming

- Single Source Shortest Paths Problem
- Dynamic Programming Formulation
- Bellman-Ford Algorithm

Imdad UlLah Khan

SSSP Problem

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all vertices $v \in V$

This assumes no negative weight cycle in G
\triangleright Actually, no negative cycle reachable from the source vertex s is sufficient

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle
■ Focus on finding shortest paths (assume no negative weight cycle in G)
■ Use the sequential nature of paths and use subpaths as subproblems
■ How to define subproblems?
Bellman-Ford idea: Consider shortest paths with at most i edges
■ Use hop lengths of paths, i to define sizes of problems

- i gives a natural ordering on the problems from larger to smaller

■ To solve $\operatorname{OPT}(v, i)$ we need to know only $\operatorname{OPT}(u, j)$ for $j<i$

- Use shortest paths with at most i edges to find shortest paths with at most $i+1$ edges
- Ordering subproblems become simpler, when we expand the number of subproblems

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle Focus on finding shortest paths (assume no negative weight cycle in G) $\operatorname{OPT}(v, i)$: minimum weight of a $s-v$ path that uses at most i edges

- If no $s-v$ path uses at most i edges, then $\operatorname{OPT}(v, i)=\infty$

■ If the best $s-v$ path uses $\leq i-1$ edges then $\operatorname{OPT}(v, i)=\operatorname{OPT}(v, i-1)$
■ If the best $s-v$ path uses i edges and it's last edge is (u, v), then $\operatorname{OPT}(v, i)=\operatorname{OPT}(u, i-1)+w(u v)$
■ $d(v):=d(s, v)=\operatorname{OPT}(v, n-1)$

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle Focus on finding shortest paths (assume no negative weight cycle in G) $\operatorname{OPT}(v, i)$: minimum weight of a $s-v$ path that uses at most i edges

■ If no $s-v$ path uses at most i edges, then $\operatorname{OPT}(v, i)=\infty$
■ If the best $s-v$ path uses $\leq i-1$ edges then $\operatorname{OPT}(v, i)=\operatorname{OPT}(v, i-1)$
■ If the best $s-v$ path uses i edges and it's last edge is (u, v), then $\operatorname{OPT}(v, i)=\operatorname{OPT}(u, i-1)+w(u v)$
■ $d(v):=d(s, v)=\operatorname{OPT}(v, n-1)$

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle $\operatorname{OPT}(v, i)$: minimum weight of a $s-v$ path that uses at most i edges

To optimally reach v in at most i hops, do
1 optimally reach some neighbor u of v in at most $i-1$ hops
2 hop from u to v

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle OPT (v, i) : minimum weight of a $s-v$ path that uses at most i edges

If P is the best $s-v$ path using $\leq i$ edges and it's last edge is (u, v), then $P \backslash\{(u, v)\}$ is the best $s-u$ path that uses at most $i-1$ edges

Suppose P^{\prime} is a path using $\leq i-1$ edges and has $w\left(P^{\prime}\right)<w(P \backslash\{(u, v)\})$, then $P^{\prime} \cup\{(u, v)\}$ is a lighter path than P using $\leq i$ edge

$$
\operatorname{OPT}(v, i)=\min \left\{\begin{array}{l}
\operatorname{OPT}(v, i-1) \\
\min _{u \in N(v)} \operatorname{OPT}(u, i-1)+w(u v)
\end{array}\right.
$$

SSSP Problem: Dynamic Programming Formulation

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all $v \in V$ or output a negative cycle $\operatorname{OPT}(v, i)$: minimum weight of a $s-v$ path that uses at most i edges

$$
\operatorname{OPT}(v, i)=\min \begin{cases}\infty & \text { if } i=0 \wedge s \neq v \\ 0 & \text { if } i=0 \wedge s=v \\ \operatorname{OPT}(v, i-1) & \\ \min _{u \in N(v)} \operatorname{OPT}(u, i-1)+w(u v) & \end{cases}
$$

Maintain a table of solution for each v and $1 \leq i \leq n$ (memo)
A negative cycle is detected if $\operatorname{OPT}(v, n)$ improves upon $\operatorname{OPT}(v, n-1)$

