Algorithms

Dynamic Programming

- Weighted Interval Scheduling
- Dynamic Programming Formulation

IMDAD ULLAH KHAN

Weighted Interval Scheduling

You have a mono-task resource

▷ e.g. a lecture room or a research equipment

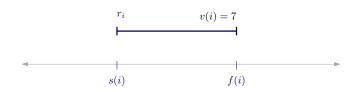
- and multiple requests to use the resource
 Each request specifies a start time and finish time
 Each request has a value (weight)
- Problem is to schedule (accept/reject) the requests
 Selected requests must not overlap in time
- The goal is to accept maximum number of requests
- Goal is to accept requests with maximum total value

Weighted Interval Scheduling

- $\mathbb{R} = \{r_1, r_2, \dots, r_n\}$ (set of requests)
- Starting and finishing time of r_i : s(i) and f(i)

for
$$1 \le i \le n$$
 $s(i) < f(i)$

- Duration of request r_i is $d_i = f(i) s(i)$
- Value of request r_i is $v(i) \ge 0$



Weighted Interval Scheduling: Compatible Requests

Requests r_i and r_j are **compatible** if they do not overlap in time

 \triangleright Otherwise r_i and r_j are conflicting

$$\underbrace{s(i) < f(i)}_{r_i \text{ is to the left of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j) < f(j)}_{r_i \text{ is to the right of } r_j} < \underbrace{s(j$$

- \blacksquare r_1 and r_2 are compatible, r_4 and r_8 are compatible
- \blacksquare r_1 and r_4 are conflicting, r_5 and r_7 are conflicting

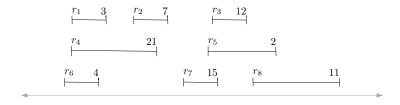
A set is compatible if all pairs in it are compatible

- $\{r_1, r_2, r_8\}$ is compatible
- $\{r_1, r_2, r_5, r_8\}$ is not compatible

Weighted Interval Scheduling: Problem Formulation

Input: A set \mathcal{R} of requests

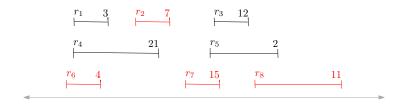
Output: A compatible subset $S \subset \mathcal{R}$ of max total weight



Weighted Interval Scheduling: Problem

Input: A set \mathcal{R} of requests

Output: A compatible subset $S \subset \mathcal{R}$ of max total weight

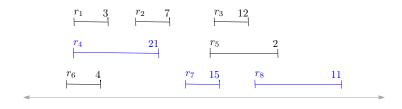


A subset with 4 requests and weight 37

Weighted Interval Scheduling: Problem

Input: A set \mathcal{R} of requests

Output: A compatible subset $S \subset \mathcal{R}$ of max total weight



A subset with 3 requests and weight 47

Weighted Interval Scheduling: Problem

Input: A set \mathcal{R} of requests

Output: A compatible subset $S \subset \mathcal{R}$ of max total weight

This is a general version of the (unweighted) interval scheduling

■ That is a special case of it

▷ All weights (or values) are equal (to 1)

- Algorithms not working for unweighted case will not work here
- Algorithms working for weighted case will work for unweighted case

Input: A set \mathcal{R} of requests

Output: A compatible subset $S \subset \mathcal{R}$ of max total weight

General version of the (unweighted) interval scheduling

The following algorithms will not work

- Earliest starting request first
- Latest finishing request first
- Shortest duration request first
- Least conflicting request first

The following algorithm may work

■ Earliest finishing request first

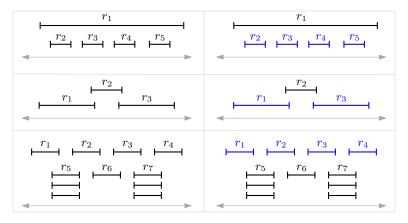
Why?

Why?

Greedy Algorithm: Earliest finishing request first

▷ Idea is to make resource free as soon as possible

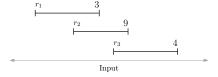
It was optimal for unweighted interval scheduling problem



Greedy Algorithm: Earliest finishing request first for weighted intervals

▷ Idea is to make resource free as soon as possible

Optimal?



Greedy Algorithm: Earliest finishing request first for weighted intervals

▷ Idea is to make resource free as soon as possible

Optimal?

