
Algorithms

Huffman Code

Data Compression
Lossy and Lossless Compression

Adaptive and non-Adaptive Compression

Fixed and Variable length Codes

Prefix Free Codes
Binary Tree Representation
Goodness Measure

Generic Greedy Algorithm

Huffman Code

Optimality and Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Huffman Code 1 / 12



Data Compression

Fixed Length Binary Code

Fixed num of bits for each symbol ▷ e.g. ASCII and Unicode

Variable Length Binary Code

Variable num of bits for each symbol ▷ uses fewer bits for frequent symbols

Prefix free code

no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Prefix free code as Binary Tree

Prefix free code can be represented by a rooted binary tree

Leaves are labeled with characters and edges with bits

The bits along the path from root a leaf is code of the symbol

Imdad ullah Khan (LUMS) Huffman Code 2 / 12



Problem Formulation

Input: Given an alphabet Σ and a frequency distribution f : Σ→ Z

Output: A prefix free code C with minimum
n∑

i=1

f (ai ) · [depth of ai in T ], where

T is the tree representation of C

Equivalently

Input: A document D

Output: A prefix free code C with minimum B(D)

Equivalence follows from the fact that Σ and f can be computed with a single
scan of D

Imdad ullah Khan (LUMS) Huffman Code 3 / 12



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

Clearly constructs a prefix free code

▷ Symbols always and only remain at leaves

Which two subtrees to merge?

Imdad ullah Khan (LUMS) Huffman Code 4 / 12



Huffman Coding

Have to take into account the frequency distribution

Merging two trees increases code lengths of leaves therein by one

Code length of a symbol is the number of merges its tree undergoes

Would like frequent symbols go through few merges

1 Huffman Coding (greedily) chooses two symbols x and y with lowest
frequencies (min and second min)

2 Inserts a new meta-symbol z for the merged tree

3 Delete x and y and their frequencies

4 f (z)← f (x) + f (y)

5 Repeat on the reduced set of symbols

Imdad ullah Khan (LUMS) Huffman Code 5 / 12



Huffman Coding

Algorithm Huffman-Tree (S)
for x ∈ S do

make-node(x) ▷ x is both symbol and pointer

for i = 1 to n − 1 do
x ← findmin(S) ▷ find the symbol with minimum freq.
S ← S \ {x}
y ← findmin(S)
S ← S \ {y}
makenode(z)
z · freq ← x · freq + y · freq
S ← S ∪ {z}

return the only node in S

Imdad ullah Khan (LUMS) Huffman Code 6 / 12



Proof of Optimality: Greedy Choice

The greedy choice property: An optimal code can be constructed by making a
locally optimal (greedy) choice for a subproblem

Lemma

Let x and y be the least and second least frequent symbols in S. Then there
exists an optimal prefix free code scheme where the codes for x and y have the
same length and differ only in the last bit

In some optimal tree, such x and y are siblings

Imdad ullah Khan (LUMS) Huffman Code 7 / 12



Proof of Optimality: Greedy Choice

The two least frequent symbols x and y are siblings in an optimal tree

Proof: Let T be an optimal tree

Let a and b be two deepest sibling leaves in T

Let f (a) ≤ f (b) =⇒ f (x) ≤ f (a) and f (y) ≤ f (b)

a

bx

y

T ′

a

x y

T ′′

a b

x

y

T

b

B(T ′) = B(T )− f (x)L(x)− f (a)L(a) + f (x)L(a) + f (a)L(x)

= − [f (x)− f (a)] L(x) + [f (x)− f (a)] L(a) ≤ B(T )

Similarly B(T ′′) ≤ B(T ′)
Imdad ullah Khan (LUMS) Huffman Code 8 / 12



Proof of Optimality: Optimal Substructure

Let x and y be the two least frequent symbols in S . Let z /∈ S be a new symbol
with f ′(z) = f (x) + f (y) and S ′ = S \ {x , y} ∪ {z}

Suppose T ′ is an optimal tree for [S ′, f ′(·)]. Make T by replacing the leaf z in
T ′ by an internal node with x and y as two children

Then T is optimal tree for [S , f (·)]

B(T ) = B(T ′)− f (z)L′(z) + [f (x) + f (y)][L′(z) + 1]

= B(T ′)− f (z)L′(z) + [f (x) + f (y)]L′(z) + [f (x) + f (y)]

= B(T ′) + [f (x) + f (y)]

Assume for a contradiction that T is not optimal

Then there is a T ′′ with B(T ′′) < B(T ) but x and y are siblings

T ′′ with the parent of x and y as a leaf is better tree than T ′ for [S ′, f ′(·)]
A contradiction to optimality of T ′

Imdad ullah Khan (LUMS) Huffman Code 9 / 12



Huffman Coding - Runtime

Algorithm 3 Huffman-Tree (S, f (·))
for x ∈ S do
MakeNode(x) ▷ x is both symbol & pointer

for i = 1 to n − 1 do
x ← FindMin(S)
S ← S \ {x}
y ← FindMin(S)
S ← S \ {y}
MakeNode(z)
z · freq ← x · freq + y · freq
S ← S ∪ {z}

return the only node in S

O(n) prep

n − 1 iterations

2 FindMin in each

+O(1) per iteration

Total O(n2)

Imdad ullah Khan (LUMS) Huffman Code 10 / 12



Huffman Coding - Implementation

Repeatedly, finding minimum is the bottleneck

We use a minimum heap to overcome it

Algorithm Huffman-Tree (S, f (·))
H ← initialize-heap(S, f (·)) ▷ min heap keyed by frequencies

for i = 1 to n − 1 do

z ← NewNode()

x ← extract-min(H)
y ← extract-min(H)
z · left ← x

z · right ← y

z · freq ← x · freq + y · freq
insert(H, z)

return extract-min(H) ▷ Return the root of the tree

Imdad ullah Khan (LUMS) Huffman Code 11 / 12



Huffman Coding - Runtime

Running Time:

Initially n insert ops ▷ O(n log n)

2n − 2 extract-min ops ▷ O(n log n)

n − 1 insert ops ▷ O(n log n)

Total runtime O(n log n)

Imdad ullah Khan (LUMS) Huffman Code 12 / 12


