Huffman Code

- Data Compression
 - Lossy and Lossless Compression
 - Adaptive and non-Adaptive Compression
 - Fixed and Variable length Codes
- Prefix Free Codes
 - Binary Tree Representation
 - Goodness Measure
- Generic Greedy Algorithm
- Huffman Code
- Optimality and Implementation

Imdad ullah Khan

Fixed Length Binary Code

Fixed num of bits for each symbol

\triangleright e.g. ASCII and Unicode

Variable Length Binary Code

■ Variable num of bits for each symbol ▷ uses fewer bits for frequent symbols

Prefix free code

no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Prefix free code as Binary Tree

- Prefix free code can be represented by a rooted binary tree
- Leaves are labeled with characters and edges with bits
- The bits along the path from root a leaf is code of the symbol

Problem Formulation

Input: Given an alphabet Σ and a frequency distribution $f : \Sigma \to \mathbb{Z}$ **Output:** A prefix free code *C* with minimum $\sum_{i=1}^{n} f(a_i) \cdot [\text{depth of } a_i \text{ in } T]$, where *T* is the tree representation of *C*

Equivalently

Input: A document D

Output: A prefix free code *C* with minimum B(D)

Equivalence follows from the fact that Σ and f can be computed with a single scan of D

Greedy Algorithm

Algorithm Generic Algorithm (D)	
Make every symbol a_i a tree T_{a_i}	
for $i = 1$ to $n - 1$ do	
Select two tree T_x and T_y	
$Merge(T_x, T_y)$	▷ Make them left/right child of a new node
return the only remaining tree T	

Clearly constructs a prefix free code

> Symbols always and only remain at leaves

Which two subtrees to merge?

Huffman Coding

- Have to take into account the frequency distribution
- Merging two trees increases code lengths of leaves therein by one
- Code length of a symbol is the number of merges its tree undergoes
- Would like frequent symbols go through few merges
- Huffman Coding (greedily) chooses two symbols x and y with lowest frequencies (min and second min)
- 2 Inserts a new meta-symbol z for the merged tree
- 3 Delete x and y and their frequencies

4
$$f(z) \leftarrow f(x) + f(y)$$

5 Repeat on the reduced set of symbols

Algorithm Huffman-Tree (S)for $x \in S$ do MAKE-NODE(x) $\triangleright x$ is both symbol and pointer for i = 1 to n - 1 do $x \leftarrow \text{FINDMIN}(\mathcal{S})$ \triangleright find the symbol with minimum freq. $\mathcal{S} \leftarrow \mathcal{S} \setminus \{x\}$ $y \leftarrow \text{FINDMIN}(\mathcal{S})$ $\mathcal{S} \leftarrow \mathcal{S} \setminus \{y\}$ MAKENODE(z) $z \cdot freq \leftarrow x \cdot freq + y \cdot freq$ $\mathcal{S} \leftarrow \mathcal{S} \cup \{z\}$ **return** the only node in \mathcal{S}

Proof of Optimality: Greedy Choice

The greedy choice property: An optimal code can be constructed by making a locally optimal (greedy) choice for a subproblem

Lemma

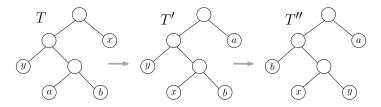
Let x and y be the least and second least frequent symbols in S. Then there exists an optimal prefix free code scheme where the codes for x and y have the same length and differ only in the last bit

In some optimal tree, such x and y are siblings

Proof of Optimality: Greedy Choice

The two least frequent symbols x and y are siblings in an optimal tree

- Proof: Let T be an optimal tree
- Let a and b be two deepest sibling leaves in T
- Let $f(a) \leq f(b) \implies f(x) \leq f(a)$ and $f(y) \leq f(b)$



B(T') = B(T) - f(x)L(x) - f(a)L(a) + f(x)L(a) + f(a)L(x)= -[f(x) - f(a)] L(x) + [f(x) - f(a)] L(a) \le B(T)

Similarly $B(T'') \leq B(T')$

Proof of Optimality: Optimal Substructure

Let x and y be the two least frequent symbols in S. Let $z \notin S$ be a new symbol with f'(z) = f(x) + f(y) and $S' = S \setminus \{x, y\} \cup \{z\}$

Suppose T' is an optimal tree for $[S', f'(\cdot)]$. Make T by replacing the leaf z in T' by an internal node with x and y as two children

Then T is optimal tree for $[S, f(\cdot)]$

$$B(T) = B(T') - f(z)L'(z) + [f(x) + f(y)][L'(z) + 1]$$

= $B(T') - f(z)L'(z) + [f(x) + f(y)]L'(z) + [f(x) + f(y)]$
= $B(T') + [f(x) + f(y)]$

Assume for a contradiction that *T* is not optimal

- Then there is a T'' with B(T'') < B(T) but x and y are siblings
- T'' with the parent of x and y as a leaf is better tree than T' for $[S', f'(\cdot)]$
- A contradiction to optimality of T'

Algorithm 3 Huffman-Tree $(S, f(\cdot))$ for $x \in S$ doMAKENODE $(x) \triangleright x$ is both symbol & pointerfor i = 1 to n - 1 do $x \leftarrow FINDMIN(S)$ $S \leftarrow S \setminus \{x\}$ $y \leftarrow FINDMIN(S)$ $S \leftarrow S \setminus \{y\}$ MAKENODE(z) $z \cdot freq \leftarrow x \cdot freq + y \cdot freq$ $S \leftarrow S \cup \{z\}$

return the only node in \mathcal{S}

- *O*(*n*) prep
- n-1 iterations
- 2 FINDMIN in each
- +O(1) per iteration
- Total *O*(*n*²)

Huffman Coding - Implementation

- Repeatedly, finding minimum is the bottleneck
- We use a minimum heap to overcome it

▷ min heap keyed by frequencies
\triangleright Return the root of the tree

Running Time:

- Initially n INSERT ops
- 2n 2 EXTRACT-MIN ops
- n-1 INSERT ops

Total runtime $O(n \log n)$

 $\triangleright O(n \log n)$ $\triangleright O(n \log n)$ $\triangleright O(n \log n)$