Algorithms

Huffman Code

Data Compression
m Lossy and Lossless Compression

m Adaptive and non-Adaptive Compression
m Fixed and Variable length Codes

m Prefix Free Codes

m Binary Tree Representation
m Goodness Measure

Generic Greedy Algorithm
m Huffman Code

Optimality and Implementation

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Huffman Code

1/12

Data Compression

Fixed Length Binary Code

m Fixed num of bits for each symbol > e.g. ASCII and Unicode

Variable Length Binary Code

m Variable num of bits for each symbol > uses fewer bits for frequent symbols

Prefix free code

m no code is a prefix of another

If a code is prefix free, then it is uniquely decodable)

Prefix free code as Binary Tree
m Prefix free code can be represented by a rooted binary tree
m Leaves are labeled with characters and edges with bits

m The bits along the path from root a leaf is code of the symbol

IMDAD ULLAH KHAN (LUMS) Huffman Code 2/12

Problem Formulation

Input: Given an alphabet ¥ and a frequency distribution f : ¥ — Z

Output: A prefix free code C with minimum >~ f(a;) - [depth of a; in T], where
i=1

T is the tree representation of C
Equivalently

Input: A document D
Output: A prefix free code C with minimum B(D)

Equivalence follows from the fact that ¥ and f can be computed with a single
scan of D

IMDAD ULLAH KHAN (LUMS) Huffman Code 3/12

Greedy Algorithm

Algorithm Generic Algorithm (D)
Make every symbol a; a tree T,
fori=1ton—1do
Select two tree T, and T,
MERGE(T, T,) > Make them left/right child of a new node

return the only remaining tree T

Clearly constructs a prefix free code
> Symbols always and only remain at leaves

Which two subtrees to merge?

IMDAD ULLAH KHAN (LUMS) Huffman Code 4/12

Huffman Coding

m Have to take into account the frequency distribution
m Merging two trees increases code lengths of leaves therein by one
m Code length of a symbol is the number of merges its tree undergoes

m Would like frequent symbols go through few merges

H Huffman Coding (greedily) chooses two symbols x and y with lowest
frequencies (min and second min)

[y

Inserts a new meta-symbol z for the merged tree
Delete x and y and their frequencies

A f(z) « f(x)+ f(y)

Repeat on the reduced set of symbols

~

IMDAD ULLAH KHAN (LUMS) Huffman Code 5/12

Huffman Coding

Algorithm Huffman-Tree (S)
for x € S do
MAKE-NODE(x) > x is both symbol and pointer
fori=1ton—1do
X 4— FINDMIN(S) > find the symbol with minimum freq.
S+ S\ {x}
y < FINDMIN(S)

S S\{y}
MAKENODE(Zz)

z-freq < x - freq + y - freq
S+ Su{z}

return the only node in §

IMDAD ULLAH KHAN (LUMS) Huffman Code 6/12

Proof of Optimality: Greedy Choice

The greedy choice property: An optimal code can be constructed by making a
locally optimal (greedy) choice for a subproblem

Let x and y be the least and second least frequent symbols in S. Then there
exists an optimal prefix free code scheme where the codes for x and y have the
same length and differ only in the last bit

In some optimal tree, such x and y are siblings J

IMDAD ULLAH KHAN (LUMS) Huffman Code 7/12

Proof of Optimality: Greedy Choice

The two least frequent symbols x and y are siblings in an optimal tree

m Proof: Let T be an optimal tree
m Let a and b be two deepest sibling leaves in T
m Let f(a) < f(b) = f(x) < f(a) and f(y) < f(b)

B(T') = B(T)— f(x)L(x) — f(a)L(a) + f(x)L(a) + f(a)L(x)
= [f(x) = f(a] L(x) + [f(x) = f(a)] L(a) < B(T)

Similarly B(T") < B(T')

IMDAD ULLAH KHAN (LUMS) Huffman Code

8/12

Proof of Optimality: Optimal Substructure

Let x and y be the two least frequent symbols in S. Let z ¢ S be a new symbol
with f'(z) = f(x) + f(y) and S’ = S\ {x,y} U {z}

Suppose T’ is an optimal tree for [S’, f/(-)]. Make T by replacing the leaf z in
T’ by an internal node with x and y as two children

Then T is optimal tree for [S, f(-)]

B(T") = f(9)L'(2) + [F(x) + FWIIL'(2) + 1]
= B(T') = f(2)L'(2) + [f(x) + FV)IL'(2) + [F(x) + F(¥)]
= B(T) +[f(x) +f(¥)]

B(T)

m Assume for a contradiction that T is not optimal
m Then there is a T" with B(T") < B(T) but x and y are siblings
m 7" with the parent of x and y as a leaf is better tree than T’ for [S', f'(-)]

m A contradiction to optimality of T’

IMDAD ULLAH KHAN (LUMS) Huffman Code 9/12

Huffman Coding - Runtime

Algorithm 3 Huffman-Tree (S, f(+))

for x € S do
MAKENODE(x) > x is both symbol & pointer

fori=1ton—1do = O(n) prep
x < FINDMIN(S) m n— 1 iterations
S S\{x} m 2 FINDMIN in each
y < FINDMIN(S) . i
S S\ {y m +O(1) per iteration
MAKENODE(z2) m Total O(n?)
z-freq < x - freq+y - freq
S+ Su{z}

return the only node in §

IMDAD ULLAH KHAN (LUMS) Huffman Code 10/12

Huffman Coding - Implementation

m Repeatedly, finding minimum is the bottleneck

m We use a minimum heap to overcome it

Algorithm Huffman-Tree (S, f(+))

‘H < INITIALIZE-HEAP(S, f(+)) > min heap keyed by frequencies
fori=1ton—1do

z + NEwWNODE()

X ¢ EXTRACT-MIN(H)

y < EXTRACT-MIN(H)

z - left < x

z-right <y
z-freq + x - freq + y - freq
INSERT(#H, z)

return EXTRACT-MIN(H) > Return the root of the tree

IMDAD ULLAH KHAN (LUMS) Huffman Code 11/12

Huffman Coding - Runtime

Running Time:

m Initially n INSERT ops > O(nlog n)
m 2n — 2 EXTRACT-MIN 0Ops > O(nlog n)
m n— 1 INSERT ops > O(nlog n)

Total runtime O(nlog n)

IMDAD ULLAH KHAN (LUMS) Huffman Code 12/12

