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Data Compression

Fixed Length Binary Code

Fixed num of bits for each symbol ▷ e.g. ASCII and Unicode

Variable Length Binary Code

Variable num of bits for each symbol ▷ uses fewer bits for frequent symbols

Prefix free code

no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Prefix free code as Binary Tree

Prefix free code can be represented by a rooted binary tree

Leaves are labeled with characters and edges with bits

The bits along the path from root a leaf is code of the symbol
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Problem Formulation

Input: Given an alphabet Σ and a frequency distribution f : Σ→ Z

Output: A prefix free code C with minimum
n∑

i=1

f (ai ) · [depth of ai in T ], where

T is the tree representation of C

Equivalently

Input: A document D

Output: A prefix free code C with minimum B(D)

Equivalence follows from the fact that Σ and f can be computed with a single
scan of D
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Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

Clearly constructs a prefix free code

▷ Symbols always and only remain at leaves

Which two subtrees to merge?
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Huffman Coding

Have to take into account the frequency distribution

Merging two trees increases code lengths of leaves therein by one

Code length of a symbol is the number of merges its tree undergoes

Would like frequent symbols go through few merges

1 Huffman Coding (greedily) chooses two symbols x and y with lowest
frequencies (min and second min)

2 Inserts a new meta-symbol z for the merged tree

3 Delete x and y and their frequencies

4 f (z)← f (x) + f (y)

5 Repeat on the reduced set of symbols
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Huffman Coding

Algorithm Huffman-Tree (S)
for x ∈ S do

make-node(x) ▷ x is both symbol and pointer

for i = 1 to n − 1 do
x ← findmin(S) ▷ find the symbol with minimum freq.
S ← S \ {x}
y ← findmin(S)
S ← S \ {y}
makenode(z)
z · freq ← x · freq + y · freq
S ← S ∪ {z}

return the only node in S
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Proof of Optimality: Greedy Choice

The greedy choice property: An optimal code can be constructed by making a
locally optimal (greedy) choice for a subproblem

Lemma

Let x and y be the least and second least frequent symbols in S. Then there
exists an optimal prefix free code scheme where the codes for x and y have the
same length and differ only in the last bit

In some optimal tree, such x and y are siblings
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Proof of Optimality: Greedy Choice

The two least frequent symbols x and y are siblings in an optimal tree

Proof: Let T be an optimal tree

Let a and b be two deepest sibling leaves in T

Let f (a) ≤ f (b) =⇒ f (x) ≤ f (a) and f (y) ≤ f (b)

a

bx

y

T ′

a

x y

T ′′

a b

x

y

T

b

B(T ′) = B(T )− f (x)L(x)− f (a)L(a) + f (x)L(a) + f (a)L(x)

= − [f (x)− f (a)] L(x) + [f (x)− f (a)] L(a) ≤ B(T )

Similarly B(T ′′) ≤ B(T ′)
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Proof of Optimality: Optimal Substructure

Let x and y be the two least frequent symbols in S . Let z /∈ S be a new symbol
with f ′(z) = f (x) + f (y) and S ′ = S \ {x , y} ∪ {z}

Suppose T ′ is an optimal tree for [S ′, f ′(·)]. Make T by replacing the leaf z in
T ′ by an internal node with x and y as two children

Then T is optimal tree for [S , f (·)]

B(T ) = B(T ′)− f (z)L′(z) + [f (x) + f (y)][L′(z) + 1]

= B(T ′)− f (z)L′(z) + [f (x) + f (y)]L′(z) + [f (x) + f (y)]

= B(T ′) + [f (x) + f (y)]

Assume for a contradiction that T is not optimal

Then there is a T ′′ with B(T ′′) < B(T ) but x and y are siblings

T ′′ with the parent of x and y as a leaf is better tree than T ′ for [S ′, f ′(·)]
A contradiction to optimality of T ′
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Huffman Coding - Runtime

Algorithm 3 Huffman-Tree (S, f (·))
for x ∈ S do
MakeNode(x) ▷ x is both symbol & pointer

for i = 1 to n − 1 do
x ← FindMin(S)
S ← S \ {x}
y ← FindMin(S)
S ← S \ {y}
MakeNode(z)
z · freq ← x · freq + y · freq
S ← S ∪ {z}

return the only node in S

O(n) prep

n − 1 iterations

2 FindMin in each

+O(1) per iteration

Total O(n2)
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Huffman Coding - Implementation

Repeatedly, finding minimum is the bottleneck

We use a minimum heap to overcome it

Algorithm Huffman-Tree (S, f (·))
H ← initialize-heap(S, f (·)) ▷ min heap keyed by frequencies

for i = 1 to n − 1 do

z ← NewNode()

x ← extract-min(H)
y ← extract-min(H)
z · left ← x

z · right ← y

z · freq ← x · freq + y · freq
insert(H, z)

return extract-min(H) ▷ Return the root of the tree

Imdad ullah Khan (LUMS) Huffman Code 11 / 12



Huffman Coding - Runtime

Running Time:

Initially n insert ops ▷ O(n log n)

2n − 2 extract-min ops ▷ O(n log n)

n − 1 insert ops ▷ O(n log n)

Total runtime O(n log n)
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