Algorithms

Huffman Code

Data Compression
m Lossy and Lossless Compression

m Adaptive and non-Adaptive Compression
m Fixed and Variable length Codes

m Prefix Free Codes

m Binary Tree Representation
m Goodness Measure

Generic Greedy Algorithm
m Huffman Code

Optimality and Implementation

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Huffman Code

1/15

Data Compression

Fixed Length Binary Code

m Fixed num of bits for each symbol > e.g. ASCII and Unicode

Variable Length Binary Code

m Variable num of bits for each symbol > uses fewer bits for frequent symbols

Prefix free code

m no code is a prefix of another

If a code is prefix free, then it is uniquely decodable)

Prefix free code as Binary Tree
m Prefix free code can be represented by a rooted binary tree
m Leaves are labeled with characters and edges with bits

m The bits along the path from root a leaf is code of the symbol

IMDAD ULLAH KHAN (LUMS) Huffman Code 2/15

Compression from Codes (Binary Trees)

m Alphabet ¥ = {a;,...,a,}

m A document D € D

m f: frequency distribution, f(a;) : freq. of a; in D

m C: a compression scheme with code given as a tree

Bc(D) = B(D): number of bits to encode D with C

C(aj): the code for a; and len(C(a;)): is its length

m L(a;) = len(C(a;))= length of root to leaf (a;) path, depth(a;)

Total number of bits needed to encode the document D is

B(D) = Y f(a)l(ai) = Zf(a,-)- [depth of a; in T]

EASN

IMDAD ULLAH KHAN (LUMS) Huffman Code 3/15

Problem Formulation

Input: Given an alphabet ¥ and a frequency distribution f : ¥ — Z

Output: A prefix free code C with minimum >~ f(a;) - [depth of a; in T], where
i=1

T is the tree representation of C
Equivalently

Input: A document D
Output: A prefix free code C with minimum B(D)

Equivalence follows from the fact that ¥ and f can be computed with a single
scan of D

IMDAD ULLAH KHAN (LUMS) Huffman Code 4/15

Greedy Algorithm

Algorithm Generic Algorithm (D)
Make every symbol a; a tree T,
fori=1ton—1do
Select two tree T, and T,
MERGE(T, T,) > Make them left/right child of a new node

return the only remaining tree T

Clearly constructs a prefix free code
> Symbols always and only remain at leaves

Which two subtrees to merge?

IMDAD ULLAH KHAN (LUMS) Huffman Code 5/15

Huffman Coding

m Have to take into account the frequency distribution
m Merging two trees increases code lengths of leaves therein by one
m Code length of a symbol is the number of merges its tree undergoes

m Would like frequent symbols go through few merges

H Huffman Coding (greedily) chooses two symbols x and y with lowest
frequencies (min and second min)

[y

Inserts a new meta-symbol z for the merged tree
Delete x and y and their frequencies

A f(z) « f(x)+ f(y)

Repeat on the reduced set of symbols

~

IMDAD ULLAH KHAN (LUMS) Huffman Code 6/15

Huffman Coding

S is input symbols with associated frequencies

> S can be readily populated from input D

Algorithm Huffman-Tree (S)

for x € S do > x is both symbol and pointer
MAKE-NODE(x)
fori=1ton—1do
X 4— FINDMIN(S) > find the symbol with minimum freq.
S+ S\ {x}
y FINDMIN(S)
S S\{y}
MAKENODE(Zz)
z-freq + x - freq + y - freq
S+ Su{z}

return the only node in §

IMDAD ULLAH KHAN (LUMS) Huffman Code 7/15

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

SACATRCACATAT)

Huffman Code

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

/\

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

/\

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

/\

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS)

Huffman Code

/\

/N

Huffman Coding

for x € S do
MAKENODE(x) > x is both
symbol and pointer
fori=1ton—1do
x < FINDMIN(S)
S+ S\ {x}
y < FINDMIN(S)
S« S\ {y}
MAKENODE(z)
z - freq < x - freq + y - freq
S+ Su{z}
return the only node in S

IMDAD ULLAH KHAN (LUMS) Huffman Code

