
Algorithms

Huffman Code

Data Compression
Lossy and Lossless Compression

Adaptive and non-Adaptive Compression

Fixed and Variable length Codes

Prefix Free Codes
Binary Tree Representation
Goodness Measure

Generic Greedy Algorithm

Huffman Code

Optimality and Implementation

Imdad ullah Khan

Imdad ullah Khan (LUMS) Huffman Code 1 / 18



Data Compression

Fixed Length Binary Code

Fixed num of bits for each symbol ▷ e.g. ASCII and Unicode

Variable Length Binary Code

Variable num of bits for each symbol ▷ uses fewer bits for frequent symbols

Prefix free code

no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Prefix free code as Binary Tree

Prefix free code can be represented by a rooted binary tree

Leaves are labeled with characters and edges with bits

The bits along the path from root a leaf is code of the symbol

Imdad ullah Khan (LUMS) Huffman Code 2 / 18



Compression from Codes (Binary Trees)

Alphabet Σ = {a1, . . . , an}
A document D ∈ D
f : frequency distribution, f (ai ) : freq. of ai in D

C : a compression scheme with code given as a tree

BC (D) = B(D): number of bits to encode D with C

C (ai ): the code for ai and len(C (ai )): is its length

L(ai ) = len(C (ai ))= length of root to leaf (ai ) path, depth(ai )

Total number of bits needed to encode the document D is

B(D) =
∑
ai∈Σ

f (ai )L(ai ) =
n∑

i=1

f (ai ) · [depth of ai in T ]

Imdad ullah Khan (LUMS) Huffman Code 3 / 18



Problem Formulation

Input: Given an alphabet Σ and a frequency distribution f : Σ → Z

Output: A prefix free code C with minimum
n∑

i=1

f (ai ) · [depth of ai in T ], where

T is the tree representation of C

Equivalently

Input: A document D

Output: A prefix free code C with minimum B(D)

Equivalence follows from the fact that Σ and f can be computed with a single
scan of D

Imdad ullah Khan (LUMS) Huffman Code 4 / 18



Fano-Shannon Code

A greedy divide and conquer approach

Split Σ into Σ1 and Σ2, with (roughly) equal frequency distributions

Recursively compute T1 for (Σ1, f1) and T2 for (Σ2, f2)

Pre-pend each code in T1 and T2 with 0 and 1 resp.

▷ Correspond to merging T1 and T2 by making them left and right
subtrees of a new root node

source:https://stackoverflow.com

Example where it produces a
suboptimal code?

Imdad ullah Khan (LUMS) Huffman Code 5 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do

Select two trees Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

Imdad ullah Khan (LUMS) Huffman Code 6 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two trees Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 7 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 8 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 9 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 10 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 11 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 12 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 13 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 14 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 15 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 16 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

a b c d e f i j k l m

Imdad ullah Khan (LUMS) Huffman Code 17 / 18



Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol ai a tree Tai

for i = 1 to n − 1 do
Select two tree Tx and Ty

Merge(Tx ,Ty ) ▷ Make them left/right child of a new node

return the only remaining tree T

Clearly constructs a prefix free code

▷ Symbols always and only remain at leaves

Which two subtrees to merge?

Have to take into account the frequency distribution

Merging two trees increases code lengths of leaves therein by one

Code length of symbol is No. of merges its tree undergo

Would like frequent symbols go through few merges

Imdad ullah Khan (LUMS) Huffman Code 18 / 18


