Algorithms

Huffman Code

- Data Compression
- Lossy and Lossless Compression
- Adaptive and non-Adaptive Compression
- Fixed and Variable length Codes

■ Prefix Free Codes

- Binary Tree Representation
- Goodness Measure
- Generic Greedy Algorithm

■ Huffman Code
■ Optimality and Implementation

Imdad ullah Khan

Data Compression

Fixed Length Binary Code

- Fixed num of bits for each symbol \triangleright e.g. ASCII and Unicode

Variable Length Binary Code

- Variable num of bits for each symbol \triangleright uses fewer bits for frequent symbols Prefix free code
- no code is a prefix of another

If a code is prefix free, then it is uniquely decodable

Prefix free code as Binary Tree

- Prefix free code can be represented by a rooted binary tree
- Leaves are labeled with characters and edges with bits
- The bits along the path from root a leaf is code of the symbol

Compression from Codes (Binary Trees)

- Alphabet $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$
- A document $D \in \mathcal{D}$
- f : frequency distribution, $f\left(a_{i}\right)$: freq. of a_{i} in D
- C: a compression scheme with code given as a tree
- $B_{C}(D)=B(D)$: number of bits to encode D with C
- $C\left(a_{i}\right)$: the code for a_{i} and $\operatorname{len}\left(C\left(a_{i}\right)\right)$: is its length

■ $L\left(a_{i}\right)=\operatorname{len}\left(C\left(a_{i}\right)\right)=$ length of root to leaf $\left(a_{i}\right)$ path, depth $\left(a_{i}\right)$

Total number of bits needed to encode the document D is

$$
B(D)=\sum_{a_{i} \in \Sigma} f\left(a_{i}\right) L\left(a_{i}\right)=\sum_{i=1}^{n} f\left(a_{i}\right) \cdot\left[\text { depth of } a_{i} \text { in } T\right]
$$

Problem Formulation

Input: Given an alphabet Σ and a frequency distribution $f: \Sigma \rightarrow \mathbb{Z}$
Output: A prefix free code C with minimum $\sum_{i=1}^{n} f\left(a_{i}\right) \cdot\left[\right.$ depth of a_{i} in T], where T is the tree representation of C

Equivalently
Input: A document D
Output: A prefix free code C with minimum $B(D)$
Equivalence follows from the fact that Σ and f can be computed with a single scan of D

Fano-Shannon Code

A greedy divide and conquer approach
■ Split Σ into Σ_{1} and Σ_{2}, with (roughly) equal frequency distributions
■ Recursively compute T_{1} for $\left(\Sigma_{1}, f_{1}\right)$ and T_{2} for $\left(\Sigma_{2}, f_{2}\right)$
■ Pre-pend each code in T_{1} and T_{2} with 0 and 1 resp.
\triangleright Correspond to merging T_{1} and T_{2} by making them left and right subtrees of a new root node

Example where it produces a suboptimal code?

Greedy Algorithm

Algorithm Generic Algorithm (D)
Make every symbol a_{i} a tree $T_{a_{i}}$
for $i=1$ to $n-1$ do
Select two trees T_{x} and T_{y}
$\operatorname{Merge}\left(T_{x}, T_{y}\right) \quad \triangleright$ Make them left/right child of a new node
return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two trees T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T
(d) (e) (f)

(m)

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node
return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

(j)
(k)

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

(e)

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

(e)

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$ for $i=1$ to $n-1$ do

Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)

Make every symbol a_{i} a tree $T_{a_{i}}$
for $i=1$ to $n-1$ do
Select two tree T_{x} and T_{y} $\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node
return the only remaining tree T

Greedy Algorithm

Algorithm Generic Algorithm (D)
Make every symbol a_{i} a tree $T_{a_{i}}$
for $i=1$ to $n-1$ do
Select two tree T_{x} and T_{y}
$\operatorname{Merge}\left(T_{x}, T_{y}\right)$
\triangleright Make them left/right child of a new node
return the only remaining tree T

Clearly constructs a prefix free code
\triangleright Symbols always and only remain at leaves
Which two subtrees to merge?

- Have to take into account the frequency distribution

■ Merging two trees increases code lengths of leaves therein by one

- Code length of symbol is No. of merges its tree undergo
- Would like frequent symbols go through few merges

